Endocrine pathology-1. Diabetes mellitus

Dr.Eman Krieshan, M.D.

13-5-2024.

Pancreas. anatomy.

Diabetes mellitus (DM) is a global health issue affecting children, adolescents, and adults.

- The WHO estimates that diabetes resulted in :
- \checkmark 1.5 million deaths in 2012.
- ✓ making it the 8th leading cause of death.
- ✓ 2.2 million deaths worldwide were attributable to high blood glucose and the increased risks of cardiovascular disease and other associated complications (e.g. kidney failure),

Diabetes mellitus

 Diabetes mellitus is a group of metabolic disorders characterized by

Types

Table 20.5 Simplified Classification of Diabetes

. Type I Diabetes

Beta cell destruction, usually leading to absolute insulin deficiency

2. Type 2 Diabetes

Combination of insulin resistance and beta cell dysfunction

- Genetic Defects of Beta Cell Function Maturity-onset diabetes of the young (MODY) (see text) Insulin gene mutations
- Genetic Defects in Insulin Action Insulin receptor mutations
- 5. Exocrine Pancreatic Defects
- Chronic pancreatitis

Pancreatectomy

- Cystic fibrosis
- Hemochromatosis
- 6. Endocrinopathies Growth hormone excess (acromegaly) Cushing syndrome Hyperthyroidism
 - Pheochromocytoma
- Infections
 Cytomegalovirus infection Coxsackievirus B infection Congenital rubella
- 8. Drugs Glucocorticoids Thyroid hormone
- β-Adrenergic agonists
 9. Gestational Diabetes
 - Diabetes associated with pregnancy

Types of Diabetes

Type 1 diabetes (T1D).

 Autoimmune disease in which islet destruction is caused primarily by immune effector cells

reacting against endogenous beta cell antigens.

- formerly known as juvenile diabetes.
- Most patients with type 1 diabetes depend on

exogenous insulin for survival; without insulin

they develop serious metabolic complications

such as ketoacidosis and coma.

Pathogenesis

- the pathogenesis of type 1 diabetes involves:
- ✓ genetic susceptibility: HLA-DR3, or DR4, failure of selftolerance in T cells specific for beta cell antigens.

environmental factors: infection?

- ✓ All lead to :
- production of autoantibodies against a variety of beta cell antigens, including insulin and the beta cell enzyme glutamic acid decarboxylase.

Type 2 diabetes (T2D)

- heterogeneous and multifactorial complex disease that involves interactions of <u>genetics</u>, <u>environmental</u> risk factors, and <u>inflammation</u>.
- Unlike type 1 diabetes, however, there is no evidence of an autoimmune basis.
- The two defects that characterize type 2 diabetes are:
- ✓ (1) a <u>decreased ability of peripheral tissues</u> to respond to insulin (insulin resistance).
- (2) beta cell dysfunction that is manifested as inadequate insulin secretion in the face of insulin resistance and hyperglycemia

Insulin resistance

- Insulin resistance is defined as the failure of target tissues to respond normally to insulin.
- The liver, skeletal muscle, and adipose tissue are the major tissues where insulin resistance manifests as follows:
- Failure to inhibit endogenous glucose production (gluconeogenesis) in the liver, which contributes to high fasting blood glucose levels.
- Abnormally low glucose uptake and glycogen synthesis in skeletal muscle following a meal, which contributes to a high postprandial blood glucose level.
- Failure to inhibit hormone-sensitive lipase in adipose tissue, leading to excess circulating free fatty acids (FFAs), which, exacerbates the state of insulin resistance

Obesity and Insulin Resistance

insulin Vesistant

 The association of obesity with type 2 diabetes has been recognized for decades, with visceral obesity being common in a majority of affected patients.

Pathogenesis

Obesity can adversely impact insulin sensitivity in numerous ways • 1. Excess FFAs.

- 2. Adipokines.
- 3. Inflammation:
- Inflammatory milieu (mediated by

proinflammatory cytokines that are secreted in

response to excess nutrients such as FFAs)

results in both peripheral insulin resistance and

beta cell dysfunction

Beta Cell Dysfunction

- beta cell dysfunction is an essential component in the development of overt diabetes.
- Several mechanisms have been implicated:
- Excess free fatty acids that compromise beta cell function and attenuate insulin release (lipotoxicity).
- Chronic hyperglycemia (glucotoxicity).

MORPHOLOGY

- Reduction in the number and size of islets.
- Leukocytic infiltrates in the islets.
- Amyloid deposition within islets in type 2 diabetes.

Morphology cont.

microvascular: in retina in hart

- Diabetic macrovascular disease. The hallmark of diabetic macrovascular disease is accelerated atherosclerosis.
- Hyaline arteriolosclerosis,

Mechanisms for vascular disease in diabetes

- pathologic effects of advanced glycation end product accumulation.
- impaired vasodilatory response attributable to nitric oxide inhibition,.
- smooth muscle cell dysfunction.
- overproduction of endothelial growth factors.
- chronic inflammation

➢glomerular lesions.

renal vascular lesions, principally arteriolosclerosis.

Diabetic nephropathy.

Renal cortex showing thickening of tubular basement membranes .

Nodular glomerulosclerosis

No Function with in the place [Fiblosis]

Metabolic Complications.

- Acute Metabolic Complications of Diabetes.
- Chronic Complications of Diabetes.

Chronic Complications of Diabetes

- damage induced in :
- large- and medium-sized muscular arteries (diabetic macrovascular disease).
- causes accelerated atherosclerosis among diabetics, resulting in increased myocardial infarction, stroke, and lower-extremity ischemia
- small-vessels (diabetic microvascular disease)
- The effects of microvascular disease are most profound in the retina kidneys, and peripheral nerves, resulting in:
- ✓ diabetic retinopathy.
- ✓ nephropathy.
- ✓ neuropathy.

diabetic retinopathy

- Features include:
- ✓ advanced proliferative retinopathy.
- ✓ retinal hemorrhages.
- ✓ Exudates.
- ✓ neovascularization.
- ✓ tractional retinal detachment

Chronic Complications of Diabetes

Fig. 20.25 Long-term complications of diabetes.

