
ACID BASE BALANCE BY مرابع الاحوال لازم اسوي حماية DR/ HEBA KAREEM

لارم تكون الحماية ضد ال acidosis لانه الجسم بطبيعة الاحوال مثلا بال glycolysis رح تنتج احماض ف لازم اسوي حماية ضدها

Acid-Base balance

Acid is a substance whose dissociation in water releases hydrogen ions (H⁺)Produces more acidic solution & decrease in pH HCL _____ H⁺ + Cl⁻

□ <u>A base releases hydroxyl ions (OH-) in aqueous</u> solution.

This results in increase in pH of the solution

NaOH _____ Na⁺ + OH⁻ رومی (در برای) Amphoteric substances ★ کاری (در برای) کاری (م) کاری (در برای)

Some substances, such as amino acids & proteins,

act acids as well as bases

Maintenance of blood pH I acidosis is more dangerous			
The normal pH of the blood is maintained in the <u>narrow</u>			
range of <u>7.35-7.45</u> (slightly a	Ikaline).	If the range is interrupted it may cause neither a <u>cidosis</u> or alkalosis	
□ The body has developed the	ree lines o	f defense	to
regulate the body's acid-base balance Bicarbonate to carbonic acid 20:1 > alkaliside			
1-Blood <u>buffers</u> Weak acid with strong base	Carbonic acid Bicarbonate > alkaline	As a buffer there should be alkaline more than acid due to the defence mechanism.	
2- <u>Respiratory</u> mechanism			
3- <u>Renal</u> mechanism			
□ <u>Blood buffers</u> :			
□ A buffer may be defined as a solution of a weak acid & its			
salt with a strongbase			

Blood contains three buffer systems

Dicarbonate ". > Carbonic acid

□ **Bicarbonate** buffer

Phosphate buffer

x20, since i want to treat acidosis

Protein buffer

Bicarbonate buffer system:

□ Sodium bicarbonate & carbonic acid (NaHCO₃- H₂CO₃) is the

most predominant buffer system of ECF.

Carbonic acid dissociates into hydrogen and bicarbonate ions.

 $H_2CO_3 \longleftrightarrow H^+ + HCO_3$

The blood pH 7.4, the ratio of bicarbonate to carbonic acid

is <u>20: 1</u>

ά

Acidosis can be due to the decrease in carbonic acid and increase bicarbonate base

The bicarbonate concentration is much higher (20 times) than

carbonic acid in the blood.

This is referred to as <u>alkali reserve</u>.
 This is referred to as <u>alkali res</u>

A rapid mechanism. But can't be used in long term

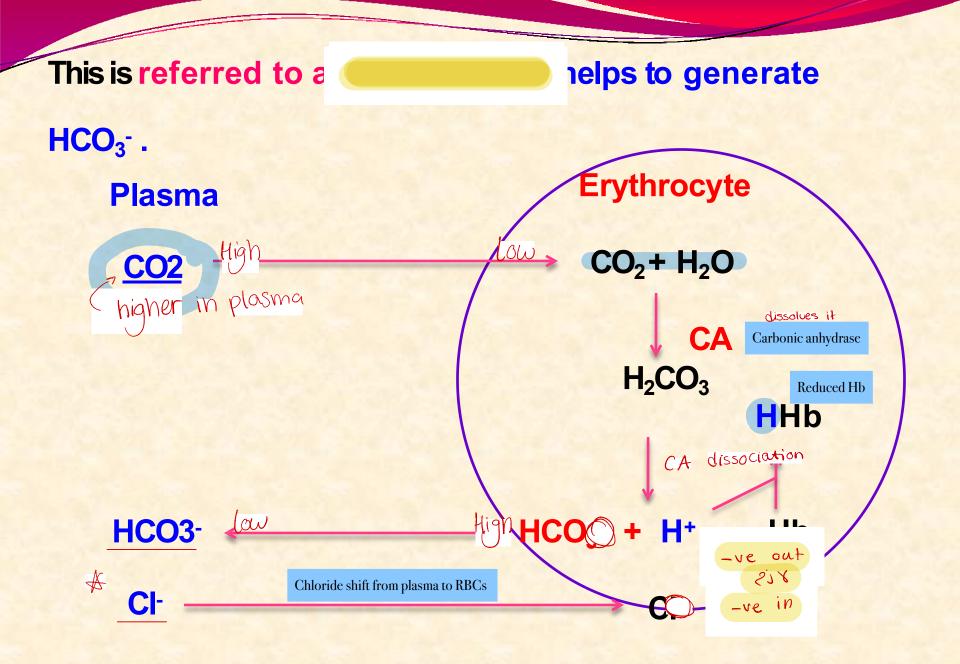
This is achieved by regulating the concentration of

carbonic acid (H_2CO_3) in the blood.

T in acidosis so, hyper to fix & avoid its dissolving

hyper $\rightarrow \uparrow$ basic hype $\rightarrow \uparrow$ acidic In the RBC the mechanism is anaerobic due to the absence of mitochondria

The large volumes of CO₂ produced by the cellular metabolic activity. All of this CO₂ is eliminated from the body in the expired air via the lungs **Carbonic anhydrase** H₂CO₃ $CO_{2} + H_{2}O$ The respiratory centre is highly sensitive to changes in the pH of blood. Decrease in blood pH causes hyperventilation to blow off co₂& reducing the H₂CO₃ concentration

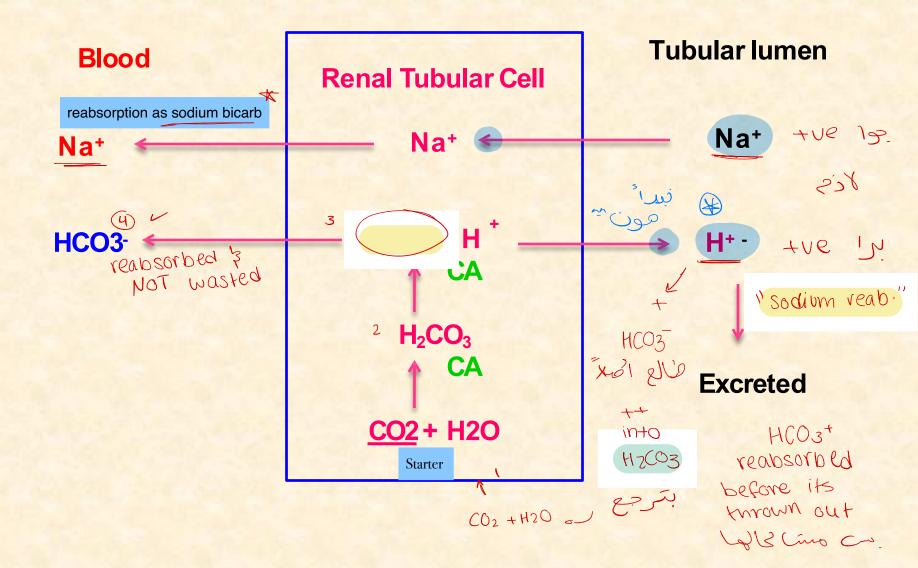

Respiratory control of blood pH is rapid but only a short term regulatory process, since hyperventilation cannot proceed for long. Hemoglobin as a buffer □ Hemoglobin binds to H⁺ ions & helps to transport CO₂as HCO₃-with a minimum change in pH. □ In the lungs, hemoglobin combines with O₂, H⁺ ions are removed which combine with HCO₃-to form H₂CO₃ & is dissociates to release CO_2 to be exhaled.

Generation of HCO3 by RBC -> & mito

- Due to lack of aerobic metabolic pathways, RBC produce very little CO₂.
- The plasma CO₂ diffuses into RBCalong the concentration gradient, it combines with water to form H₂CO₃ by Carbonic anhydrase.
- In RBC, H₂CO₃ dissociates to produce H⁺ & HCO₃⁻
 The H⁺ ions are buffered by Hemoglobin.
- □ As the concentration of HCO₃-increases in the RBC, it diffuses

into plasma along with concentration gradient, in

exchange for Cl-ions, to maintain electrical neutrality.


Renal mechanism for pH regulation

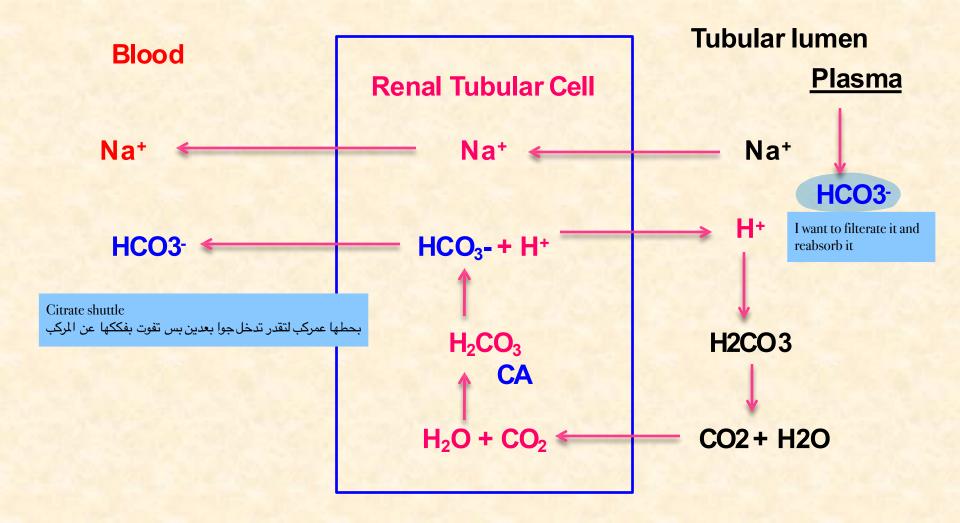
- plays an important role in the regulation of pH through: □ 1-Excretion of H⁺ ions By urine يا ترجي ۲+ يا ترجيع Biarbond **2-Reabsorption of Bicarbonate** □ 3-Excretion of titratable acid **4-Excretion of ammonium ions**
 - THERE, CIN acidosis munili

Excretion of H⁺ ions

- Kidney is the <u>only route</u> through which the H⁺ can be eliminated from the body.
- H⁺ excretion occurs in the proximal convoluted tubules & is coupled with generation of HCO₃-.
- Carbonic anhydrase catalyses the production of carbonic acid (H₂CO₃) from CO₂&H₂O in renal tubular cells.
- □ H₂CO₃ then dissociates to H⁺ & HCO₃-
- □ H⁺ ions are secreted into tubular lumen in
 - exchange for Na⁺
- □ Na⁺ in association with HCO₃⁻ is reabsorbed into blood

Excretion of H⁺ ions

Reabsorption of Bicarbonate


- This mechanism is responsible to conserve blood HCO₃, with simultaneous excretion of H⁺ ions.
- □ Bicarbonate freely diffuses from plasma into tubular lumen.
- \Box HCO₃-combines with H⁺, secreted by tubular cells, to form H₂CO₃.
- \Box H₂CO₃ is then cleaved to form CO₂ and H₂O.
- □ As the CO₂ concentration builds up in the lumen, it diffuses into the tubular cells along the concentration gradient.

In the tubular cell, CO_2 again combines with H_2O to form H_2CO_3 which then dissociates into $H^+ \& HCO_3^-$

- □ The H⁺ is secreted into the lumen in exchange for Na⁺.
- □ The HCO₃-is reabsorbed into plasma in
 - association with Na⁺.

Reabsorption of HCO₃- is a cyclic process without net () excretion of H⁺ or generation of new HCO₃-

Reabsorption of bicarbonate

Sodium hydroxide للكمية لححتاجها منه عشان اعادل blood with urine

alkalining utine until it matches blood PH

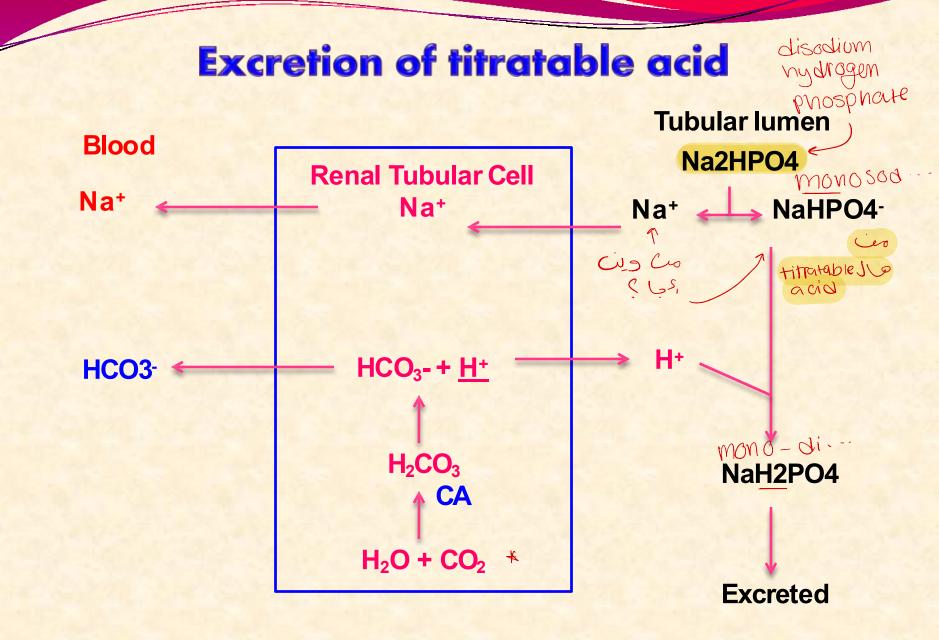
Titratable acidity is a measure of acid
کل ما زاد ال ۲۴ بال مستلم حتاج منه آکثر لاخون.
excreted into urine by the kidney.

□ Titratable acidity refers to the number of milliliters of N/10 NaOH required to titrate 1liter of urine to pH 7.4.

□ Titratable acidity reflects the H⁺ ions excreted into

urine.

! how much Esodium hydroxide] we add to uvine to match its pH = 7.4 to bloods pH = 7.35 - 7.45

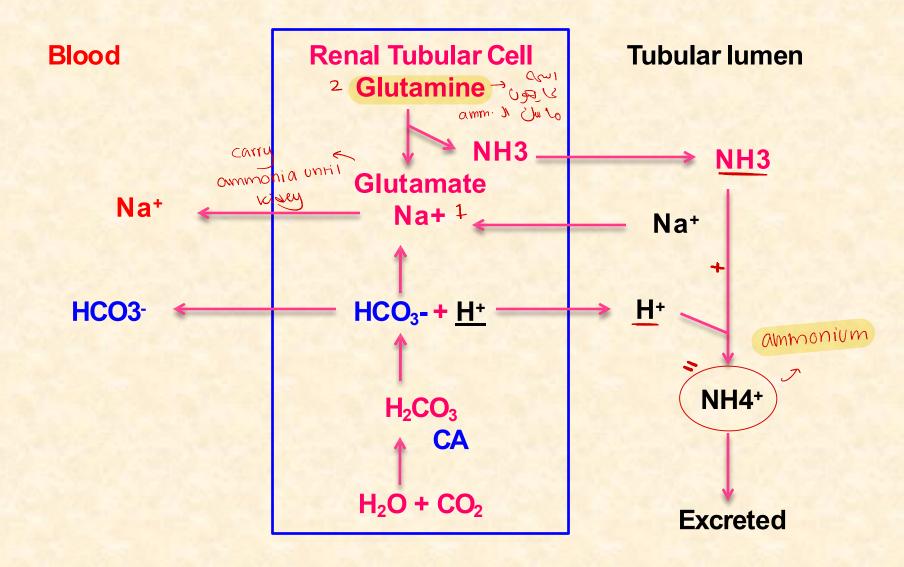

base

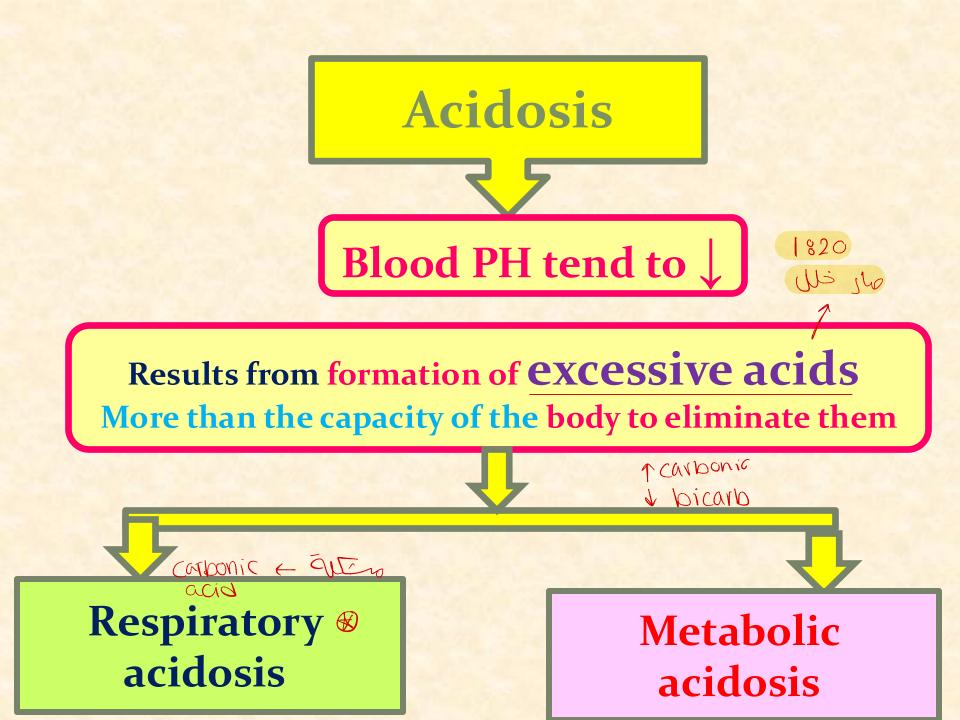
□ H⁺ ions are secreted into the tubular lumen in exchange for Na⁺ ion.

- This Na⁺ is obtained from the base, disodium hydrogen phosphate (Na₂HPO₄).
- This combines with H⁺ to produce the acid, sodium dihydrogen phosphate (NaH2PO4), in which form the major quantity of titratable acid in urine is present.
 Tubular fluid measure down the renal tubular
- Tubular fluid moves down the renal tubules,

more and more H⁺ ions are added, resulting in the acidification of

urine. Causes a fall in the pH of urine as low as 4.5.




Excretion of ammonium ions

- The H⁺ ion combines with NH3 to form <u>ammonium</u> ion (NH4⁺).
- The renal tubular cells deaminate glutamine to glutamate and NH3 by the action of enzyme glutaminase.
- The liberated NH3 diffuses into the tubular lumen where it combines with H⁺ to form NH4⁺.
- Ammonium ions cannot diffuse back into tubular cells and excreted into urine.

Ammonia is toxic One of the ways in excreting it is by urine

Excretion of ammonium ions

Respiratory acidosis

hypoventilation JI whit *

↑CO2 (CO2 <u>RETENTION</u>) due to

- Bronchial asthma
- **Chronic bronchitis**
- Emphysema
- Pneumonia
- Respiratory centre inhibition
- Asphexia
- $\uparrow CO2 \rightarrow \qquad \uparrow blood H2CO3$

If lung is abnormal kidney will fix the case

Respiratory acidosis

$\rightarrow \downarrow HCO3^{-}/H2CO3$ (N=20:1) $\rightarrow \downarrow$ blood PH (Uncompensated respiratory acidosis [acidemia]) How to compensate? **Kidney** reabsorbs more HCO3⁻

- Till normal HCO3⁻/H2CO3 (20:1) \rightarrow PH reach 7.4
- NOT hypervent. Cuz lung is not healthy

Metabolic acidosis no reabs. < diamhea acids or \checkmark bases (HCO3⁻) in blood ↓ blood HCO3⁻ blood H2CO3 not changed $\rightarrow \downarrow HCO3^{-}/H2CO3$ (N=20:1) $\rightarrow \downarrow$ blood PH

(Uncompensated metabolic acidosis [acidemia]) How to compensate?

 \downarrow PH \rightarrow ++ chemoreceptors in respiratory centre \rightarrow hyperventilation \rightarrow loss of $CO2 \rightarrow \downarrow H2CO3$

Till normal HCO3⁻/H2CO3 (20:1)

M workout

Vinner

failure +

→ PH reach 7.4 (Compensated metabolic acidosis)

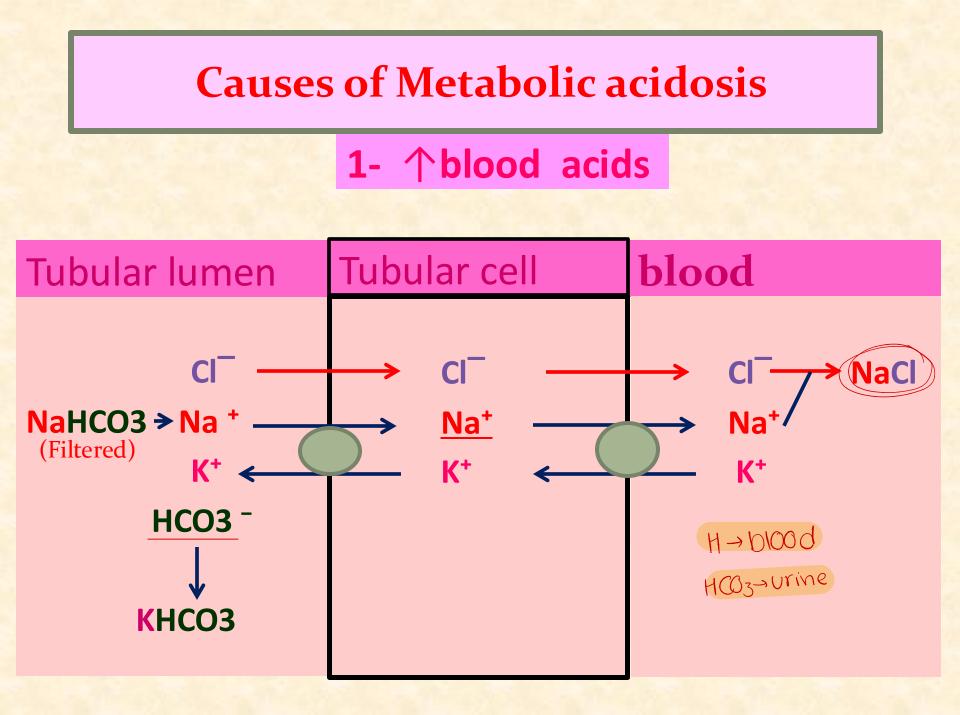
Causes of Metabolic acidosis

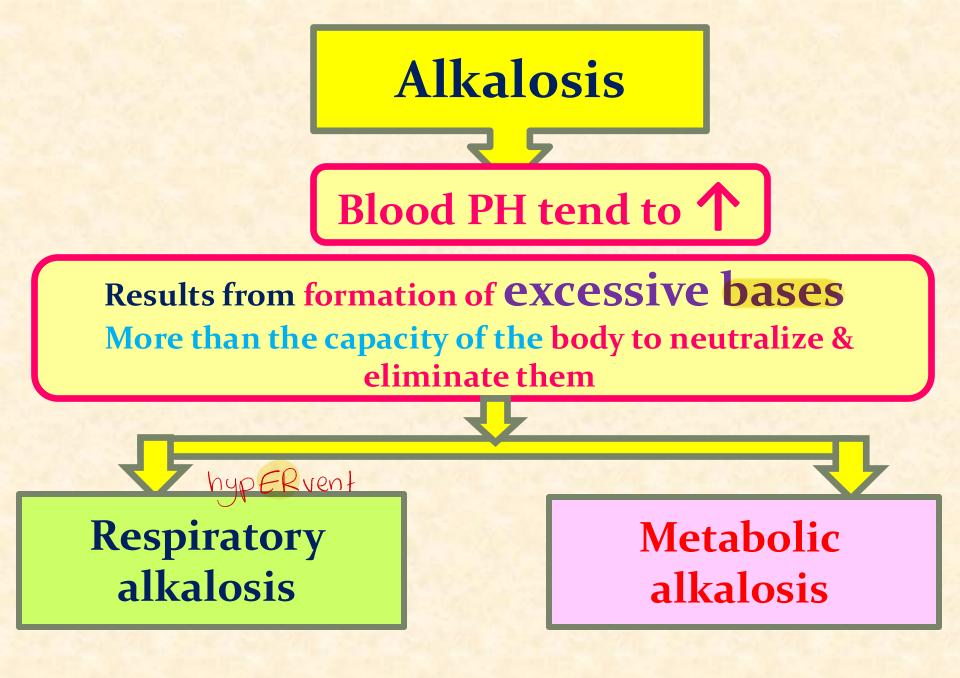
1- **↑blood** acids

Lactic acidosis Uncontrolled Diabetes inscp that will cause increase in ketone bodies

↑production

↑ lactic acid in muscular exercise


↑ ketone bodies in Ketosis due to Diabetes mellitus


↑ acids from metabolism of different food stuffs (diet) as pyruvic , lactic, phosphoric and nucleic acids. excretion
 failure of excretion by the kidney in chronic renal failure

Causes of Metabolic acidosis


1- \uparrow base loss

Diarrhea: Intestinal juices are alkaline being rich in Na⁺ & K⁺ bicarbonate higher \rightarrow gas Vomiting: due to low intestinal obstruction OST Hyperkalemia: * **^** renal tubular reabsorption of Na⁺ in exchange with K⁺ \rightarrow stop of Na⁺/ H⁺ exchange * Na⁺ reabsorption will be in the form of NaCl not NaHCO3 > HCO3⁻ will be excreted in the form of KHCO3 in urine. **HCO3** loss in urine \rightarrow metabolic acidosis (Alkaline urine) \uparrow Cl in blood \rightarrow hyperchloremic acidosis (Acidic blood) The alkaline urine& acidic blood is called paradoxical acidosis معكوس

Respiratory alkalosis

- ↑ CO2 loss due to
- fever
- encephalitis
- high altitude
- Iate stages of salicylate poisoning
- → hystrical hyperventilation → following emotioned
 - ↓ blood H2CO3

Respiratory alkalosis

↓ CO2 → blood H2CO3 HCO3⁻ not changed → ↑ HCO3⁻/H2CO3 (N=20:1) → ↑ blood PH (Uncompensated respiratory alkalosis [alkalemia])

How to compensate?

-- of renal tubular reabsorption of HCO3⁻

Kidney excretes more HCO3⁻

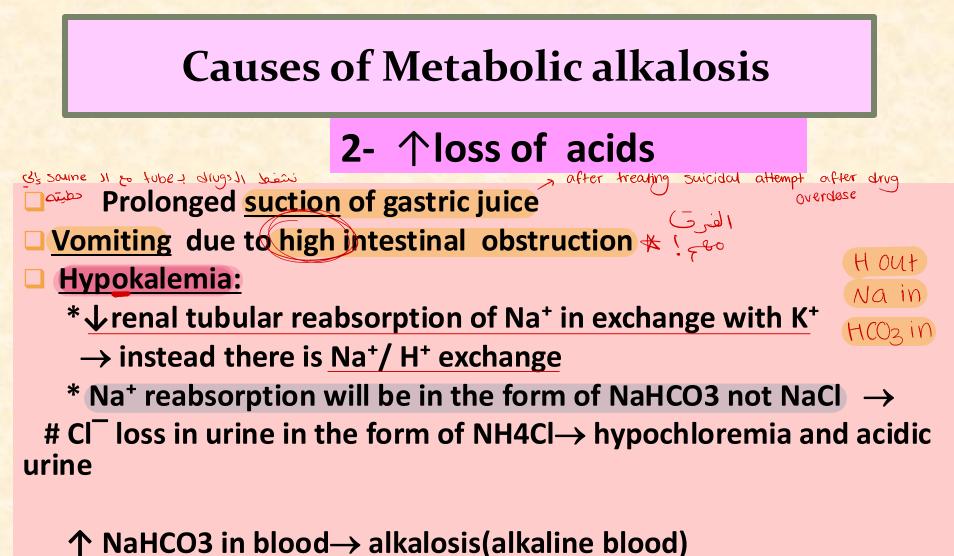
- Till normal HCO3⁻/H2CO3 (20:1)
- \rightarrow PH reach 7.4

(Compensated respiratory alkalosis)

Urine will be alkaline because of 个 secretion of K⁺ & HCO3⁻ in urine

Metabolic alkalosis

↑ bases or ↓ acids in blood → ↑ blood HCO3⁻ blood H2CO3 not changed → ↑ HCO3⁻/H2CO3 (N=20:1) → ↑ blood PH


(Uncompensated metabolic alkalosis [acidemia]) <u>How to compensate?</u>

- \uparrow PH \rightarrow - chemoreceptors in respiratory centre \rightarrow hypoventilation \rightarrow CO2 retention \rightarrow \uparrow H2CO3
- Till normal HCO3⁻/H2CO3 (20:1)
- → PH reach 7.4 (Compensated metabolic alkalosis)

Causes of Metabolic alkalosis

1- ↑absorption of bases

 Intake of high vegetable and fruit diet: They contain Bicarbonate salts and citrate salts. Citrate salts will be transformed into bicarbonate salts by krebs cycle
 Intake of drugs containing bicarbonate & citrate salts (drugs used for treatment of hyperacidity & peptic ulcer)

The <u>acidic urine& alkaline blood is called paradoxical alkalosis</u>

<u>Cushing syndrome</u>: →Na& water retention & K excretion→ hypokalemia