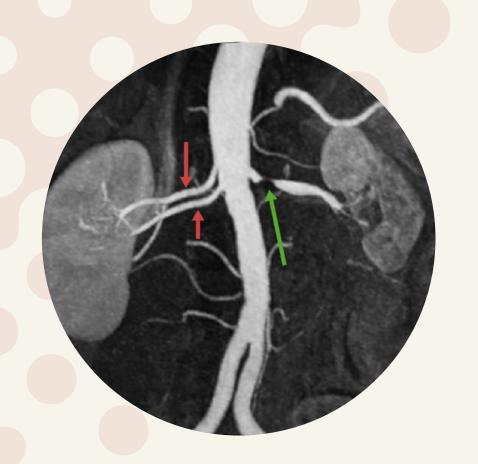

Renal Artery Stenosis


Yousef Al-nawaiesah Alaa Al-saraireh

Renal artery anatomy

Definition

Definition

- narrowing of one or both renal arteries, preventing adequate blood flow to the kidneys.
- It is most commonly caused by atherosclerosis in old men , fibromuscular dysplasia in young women.

Epidemiology

Accounts for 1–10% of all hypertension cases.

3–10% of pediatric cases of secondary hypertension have a renovascular etiology

Age and sex preponderance depend on the underlying cause.

Etiology

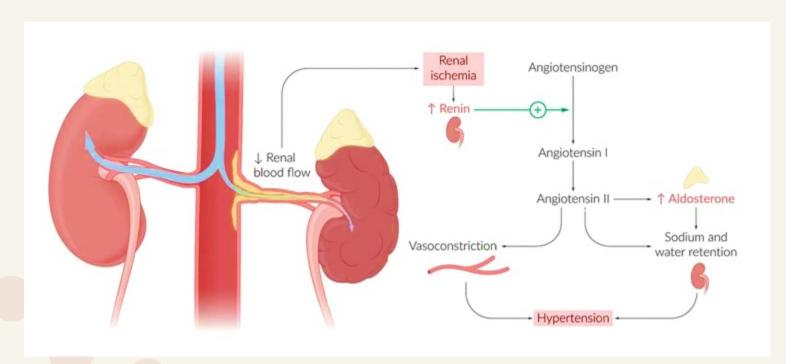
Atherosclerosis

Occurs more often in men > 50 years of age, increased risk in smokers.

Fibromuscular dysplasia

stenosis of the small and medium-sized arteries due to proliferation of connective tissue and muscle fibers within the arterial vessel walls. mostly affects women < 50 years of age.

Etiology


- Improper surgical anastomosis after renal transplantation.
- Vasculitis (e.g., Takayasu arteritis, polyarteritis nodosa, Kawasaki disease).
- Hereditary conditions (e.g., neurofibromatosis type 1).
- Extrinsic compression (e.g., abdominal aortic aneurysm, retroperitoneal tumors).
- Abdominal radiation therapy.

Pathophysiology

- Narrowing of one or both renal arteries → Obstruction of renal blood flow
 - → **Ischemia** → Renin release and activation of the renin-angiotensin-aldosterone system
 - \rightarrow Hyper-reninemic hyper-aldosteronism (increased renin leads to increased angiotensin then increased aldosterone) \rightarrow Increased sodium retention and peripheral vascular resistance \rightarrow Renovascular hypertension (**secondary hypertension**).
- Prolonged renal hypoperfusion → Chronic stimulation of the juxtaglomerular apparatus to secrete renin → Hyperplasia of the juxtaglomerular apparatus.
- No improvement in renal blood flow \rightarrow **Ischemic renal injury** \rightarrow Renal insufficiency and progressive renal atrophy (unilateral or bilateral depending on laterality of **RAS**).

Pathophysiology

Clinical Features

Hypertension: Severe (i.e., resistant to therapy) and/or early-onset (i.e., hypertension in individuals < 30 years of age).

Abdominal bruit heard over the flank or epigastrium: Present during both systole and diastole.

Features of renal insufficiency (e.g., nausea, edema).

Flash pulmonary edema:

A type of sudden-onset cardiogenic pulmonary edema triggered by an acute physiological stressor (e.g., ischemia, drugs, acute valvular dysfunction, tachyarrhythmia), most commonly occurs in patients with hypertension and in such cases is considered a type of hypertensive emergency. The resulting sympathetic activation increases **afterload** and **preload**, thereby creating a vicious cycle of worsening forward flow and pulmonary edema.

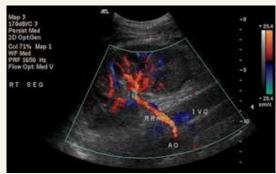
Diagnosis

- Imaging is required to confirm a clinical suspicion of renal artery stenosis.
- Laboratory findings may provide supportive evidence but are not diagnostic

Laboratory studies:

- BMP.
- Evidence of renal insufficiency.
- Hypokalemia (uncommon).
- Urinalysis: Proteinuria may be present.
- Tests to identify the underlying cause.

Indications for Imaging


- Onset of hypertension before the age of 30 years.
- Severe hypertension after the age of 55 years.
- Hypertension resistant to a 3-drug antihypertensive regimen (resistant HTN).
- New-onset or worsening of renal dysfunction (↑ serum creatinine) after initiating
 ACE inhibitors or ARBs
- Acute worsening of previously controlled hypertension.
- Hypertension with acute end-organ damage (hypertensive emergency).
- Unexplained renal atrophy or asymmetry of > 1.5 cm between the kidneys.
- Unexplained acute pulmonary edema

Modalities:

First-line (screening) tests:

- Renal dysfunction present: Duplex ultrasonography (US) or MR angiography without contrast.
- Normal or near-normal renal function: Duplex US, CT angiography, or MR

angiography with gadolinium contrast.

renal Duplex ultrasonography

Modalities:

Second-line test: Catheter angiography (Diagnostic gold standard):

 Consider if the index of suspicion for renal artery stenosis is high despite inconclusive noninvasive imaging.

Disadvantage: Invasive modality associated
 with procedural complications, including radiation
 exposure and risk of contrast-induced nephropathy.

Findings

- Increased systolic flow velocity in the renal artery (on duplex US).
- Segmental narrowing of one or both renal arteries:
 - ☐ Stenotic segment(s) can be complete or partial and solitary or multiple.
 - Hemodynamically significant renal artery stenosis:
 - ≥ 70% narrowing of the renal artery diameter on imaging.
 - Or a **50–69**% narrowing of the renal artery diameter with evidence of increased renal arterial pressures

Ipsilateral renal atrophy (decrease in kidney size).

Findings

The site of renal artery stenosis differs according to the underlying etiology.

Proximal 1/3rd: Typically, due to atherosclerotic disease

Distal 2/3rds: with stenotic segments alternating with aneurysms

string of beads" appearance

Treatment

Medical therapy

- All patients with symptomatic or asymptomatic renal artery stenosis should be initiated on medical therapy to control HTN and treat the underlying disease.
- Multiple agents may be required to achieve blood pressure control.
- Regimens including a RAAS inhibitor are preferable.
- Options include:
- o ACE inhibitors (e.g., lisinopril).
- o Angiotensin receptor blockers (e.g., losartan).
- o Calcium channel blockers (e.g., amlodipine).
- o Beta blockers (e.g., metoprolol).

Treatment

Revascularization procedures

- Endovascular revascularization: Percutaneous transluminal renal angioplasty (PTRA).
- •
- Atherosclerotic disease: Balloon angioplasty with stenting of the stenotic segment(s).
- Fibromuscular dysplasia: Balloon angioplasty typically without stenting.
- Surgical revascularization: Aortorenal bypass surgery.

Thanks

Do you have any questions?