Bone Marrow and Hematopoiesis (Hemopoiesis)

ASS. Prof.

Dr. Heba El-kaliny

Histology & Cell biology department

Intended learning outcomes (ILOs)

Knowledge :

- 1. Recognize the structural characteristics of the bone marrow.
- 2. Define and describe the structure of the different types of bone marrow.

Intellectual skills:

- 1. Differentiate between different types of bone marrow.
- Relate the composition of each type of bone marrow to its specific functions.

Bone Marrow (Myeloid Tissue)

• The myeloid tissue is a specialized vascular **connective tissue** rich in cells that are responsible for formation of blood cells.

daily formed = daily destroyed elements

Site of hematopoiesis :

- Yolk Sac: very early embryo
- Liver, Spleen: NEWBORN
- BONE

CHILDHOOD: AXIAL SKELETON & APPENDICULAR SKELETON BOTH HAVE RED (active) MARROW

ADULT: AXIAL SKELETON (RED MARROW), APPENDICULAR SKELETON (YELLOW MARROW)

Types of Bone marrow

Types of Bone marrow

Red bone marrow	yellow bone marrow
• It is the active bone marrow.	It is inactive bone marrow.
 It is red in color due to presence of blood and blood forming cells. 	 It is yellow in color due to great number of adipose (fat) cells.
 It is found in all bones of the fetus. 	Not present
 In adults, it occupies the bone marrow spaces of spongy bone. 	 It is present in the adult long bones.
Formation of blood cells	 It does not form blood but stores fat
	 Under certain conditions, such as severe hemorrhage yellow bone marrow becomes active and forms blood cells

Red B.M

Yellow B.M

Structure of red bone marrow

1) Stroma:

- **Network** formed of reticular fibers + reticular cells.

- Matrix (fibers + ground subs.): collagen type I and III, glycoproteins as fibronectin, laminin, hemonectin and proteoglycans.

- The cells of stroma includes; reticular cells, fibroblasts, macrophages, fat cells, osteogenic cells, endothelial cells and pericytes.

2) Sinusoidal capillaries: wide, very thin walled lined with a single layer of fenestrated endothelial cells with discontinuous basement membrane through which transendothelial migration of newly formed blood cells occurred.

3) Hematopoietic cords: developing blood cells

Bone Marrow Stromal cells

Reticular cells:	They are large branched cells with pale cytoplasm and lightly stained nucleus. - synthesize reticular fibers + limited phagocytic power.
Fibroblasts:	They form collagen type I, glycoproteins and proteoglycans of the matrix.
Macrophages:	phagocytosis of malformed and old RBCs and store iron to be used for formation of new erythrocytes + extruded nuclei of erythrocyte precursors and excess cytoplasm.
Fat cells:	They accumulate fat as a local fuel for energy needed for hematopoiesis.
Osteogenic cells:	They are the stem cells of cartilage and bone. They may have a role in stimulating the stem cells to form blood cells in red bone marrow.
Endothelial cells and pericytes	are present in the walls of blood sinusoids.

Reticular cells + fibers (network)

The vascular compartment of bone marrow

BM is supplied by a nutrient artery which branches into central longitudinal arteries which send out radial branches that eventually open into sinuses. These sinuses converge into a central vein that carries the blood out of the bone marrow into the general circulation.

HEMATOPOIESIS (Formation of blood cells)

- I- Pluripotential stem cells
- II- Multipotential stem cells lymphoid myeloid

III-Progenitor cells (Colony Forming Units, CFU):

- IV- Precursor cells (blasts):
- V- Mature cells

I- Pluripotential stem cells

- Produce all types of blood cells.
- 0.1% of bone marrow cells.
- Small cells, large pale rounded nucleus, basophilic cytoplasm.(ribosomes+ RER)
- ½ Reserve other ½ becomes more differentiated and form multipotential stem cells.

II- Multipotential stem cells

1-Lymphoid \rightarrow which will developed \rightarrow lymphocytes.

2-Myeloid \rightarrow which will developed \rightarrow myeloid cells \rightarrow erythrocytes, granulocytes, monocytes & megakaryocytes.

• Form progenitor cells.

III-Progenitor cells (Colony Forming Units) CFU

- Form colonies of blood cells.
- Initial letter of cell type denote its specific CFU.
 - CFU-E for erythrocytes.
 - CFU-M for monocyte.
- Form precursor cells.
- -unipotential or bipotential stem cells.
- High mitotic activity.
- Self renewing.
- They are common in bone marrow and lymphoid organs.

IV- Precursor cells (blasts)

- They are common in bone marrow and lymphatic organs and show the beginning of morphological differentiation.
- Form mature cells.
- High mitotic activity.
- Non self renewing.
- They are unipotential cells.

V- Mature cells

- Clear morphologic differentiation.
- No mitotic activity.

-They are common in bone marrow and hematopoietic organs

FIGURE 13-3 Major changes in developing hemopoietic cells.

Bone marrow microenvironment

- **HSC area,** which harbors quiescent hematopoietic stem cells and uncommitted progenitors, comprises both endosteal and subendosteal niches.
- Committed progenitors and differentiated cells are distributed in the central and perisinusoidal niches, respectively.
- As HSCs exit quiescence to proliferative states, they migrate and colonize and interacting with both endothelial cells and pericytes.

Bone Marrow Stromal cells

Mesenchymal stem cells

• The bone marrow stroma also contains mesenchymal stem cells (MSCs), also known as marrow stromal cells. These are multipotent stem cells that can differentiate into a variety of cell types. MSCs have been shown to differentiate, in vitro or in vivo , into osteolasts, chondrocytes, myocytes, marrow adipocytes.

 MSCs constitute less than 0.1% of the total cells. they are heavily used in cell therapy due to their ability to quickly expand in culture conditions while retaining their multilineage potential.

Bone marrow barrier

 The blood vessels of the bone marrow constitute a barrier, inhibiting immature blood cells from leaving the marrow. Only mature blood cells contain the membrane proteins, such as <u>aquaporin and glycophorin</u>, that are required to attach to and pass the blood vessel endothelium.

