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Glycolysis Regulation @Dsr s+
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 Glycolysis can be controlled at 3 points: y DHflecg aig—n

ﬂ Step 1 which is catalyzed by hexokinase enzyme (allosteric
enzyme). Hexokinase isoforms (except glucokinase) are
allosterically inhibited by excess G6P

@ Step 3 which is catalyzed by phosphofructokinase-1
enzyme. It is an allosteric enzyme. Two inhibitors are
citrate and ATP whereas AMP and recently fructose 2,6-

biphosphate (in-liver) are activators. Actually this is the
most important control point)and it is considered as the
e main rate-limiting step in glycolysis

@ Step 10 which is catalyzed by pyruvate kinase enzyme. Itis
controlled by the level of ATP and Acetyl CoA (both are
allosteric inhibitors). Accumulated Acetyl CoA in the

cytosol is an indicator that the energy Is now available

from fat breakdown so no need to proceed in glycolysis
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Metabolic Fates of Pyruvate @
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Metabolic Fates of Pyruvate |[@
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Cori Cycle

 Cori cycle “lactic acid cycle” is the metabolic pathway n
which lactic acid produced in muscles during the time of

oxygen depletion is converted back to glucose in the
liver b

g luconeo genes is GLYCOLYSIS GLUCONEOGENESIS
Process
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3.

4.

Metabolic Fates of Pyruvate @

In aerobic conditions, pyruvate is converted to acetg_h
CoA which enters the citric acid cycle for further
oxidation to CO, followed by oxidative phosphorylation

In anaerobic conditions like in lactic acid bacteria and
some human cells (e.g. RBCs and O,-starved muscle
cells), pyruvate is reduced to lactic acid with the
concomitant oxidation of NADH to NAD* (lactic acid

fermentation)

In-anaerobic conditions like in some M.O’s (e.g. yeast),
pyruvate is converted to ethanol

Amino acid biosynthesis: pyruvate is a precursor of
some amino acids like alanine

5. & 6. Pyruvate can be used for synthesis of oxaloacetate

or malate (both are TCA cycle intermediates)



Fluorideyas Inhibitor of Enolase @
-

IS a Cempd'ih'.lc inhihidor for Erb’a-fé
 Oral bacteria depends on the food debris or dieta

sugars found on the tooth surface as a primary

source of energy. Acids are produced through

fermentation process (harmful)
enolase >

'@U_{)@IS a competitive inhibitor o

enzyme catalyzing Step Y

Drinking fluoridated watepor using a toothpaste

containing fluoride inhibit the oral bacteria

enolase activity. Consequently, this disrupts | el

the bacteria glycolytic pathway and prevents t '

formation of dental caries
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Fluoride as Inhibitor of Enolase

« Sodium fluoride is known to have antiglycolytic effect that
iInhibits glycolysis by erythrocytes

« NaF tubes (gray top) are widely used for blood collection for
glucose measurement

 Fluoride-containing tubes are suitable for blood collection if

there is a long delay in blood separation following collection
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GI colys i<’ as Anabolic Pathway @
a

-Gycolyst as catabolic as well as anabolic =

pathway. Therefore, glycolysis is very important

central metabolic pathway

«—_

i . Glycolysis intermediates with biosynthetic roles:

1. Nucleotides biosynthesis: G6P is an initial substrate in
pentose phosphate pathway (metabolic pathway
which generates pentoses)

2. Glycogenesis via GOP (pesocion of glyeegen)
3. Lipids biosynthesis: DHAP is converted to glycerol-3-P

4. Amino acids biosynthesis: pyruvate as precursor of
alanine




Glycolysis as Anabolic Pathway
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Other substrates enter Glycolysis

Galactose
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Acetyl CoA Formation @

* In aerobic respiration, pyruvate (3C) joins the citric
acid cycle after its conversion to acetyl CoA (2C)

»| Citric acid cycle occurs in the mitochondrial matrix.
Shuttling of pyruvate from the cytosol(is facilitated by
a transporter protein embedded in the inner

mitochondrial membrane called pyruvate translocase
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Acetyl CoA Formation @

* Pyruvate dehydrogenase complex (PDC) catalyzes
the(irreversible) oxidative decarboxylation of pyruvate
into Acetyl CoA with the release of CO,

* Energy-rich molecule “NADH” is also produceds ...

PC“QSS

nz A (CoA)jacts as acetyl group carrier due to

its free sulfhydryl (= SH) end capable of formlng
_thioester bond

-_/D_C@a multi-enzyme system consists of three
catalytic enzymes and five_coenzymes)three of them
as they are tightly bound to their
corresponding enzymes)
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Pyruvate Dehydrogenase Complex

Coenzymes

)

« Thiamine pyrophosphate (IPP) a prosthetic group of E1
T, _<

;} Lipoic acid (Iigoamide) a prosthetic group of £2

. Fla\vin ag_enine d}'nucleotide (FAD) a prosthetic group of E3

e Coenzyme A (CoA or CoA-SH)

* Nicotinamide adenine dinucleotide (NAD")
—_—
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Coenzymes Structure
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Oxidized: NAD™ Reduced: NADH
Lysine side chain
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Pyruvate Dehydrogenase Complex @




Mechanism of PDC X @

* The mechanism by which this complex catalyzes
the reaction is complicated but the main processes
iInvolve (5 steps):

1.Decarboxylation of pyruvate and the release of CO, a
reaction catalyzed by E1-TPP. The product of this reaction
“Hydroxyethyl moiety” is a substrate for the next reaction

2.The transfer of Hydroxyethyl moiety from TPP of E1 to lipoic
acid of E2. This step is mediated by an oxidation of
Hydroxyethyl to acetyl group coupled with reduction of
disulfide bond

3.Transfer of acetyl group from lipoamide to CoA forming
thioester bond and consequently Acetyl CoA is produced



4.

5.

Mechanism of PDC X @
a4 44 n
Regeneration of disulfide bond of lipoamide via FAD ( E3
prosthetic group) which is reduced to FADH?2

Regeneration of FAD by NAD* which is reduced to NADH
with the electrons transferred during the reaction (originally

from Hydroxyethyl oxidation)



