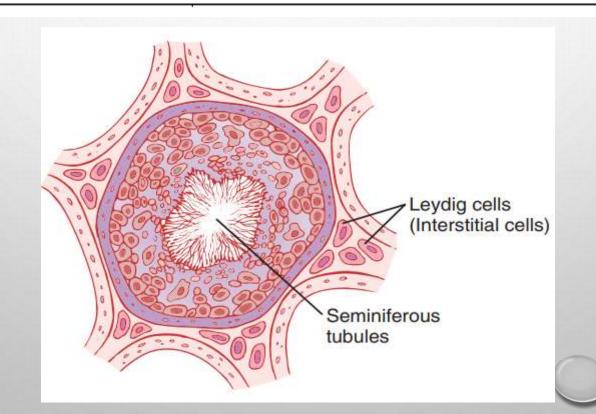
Male reproductive function

BY

DR. NOUR A. MOHAMMED

Associate Professor Of Physiology
Faculty Of Medicine, Mutah University
2024-2025

Structure of male reproductive system

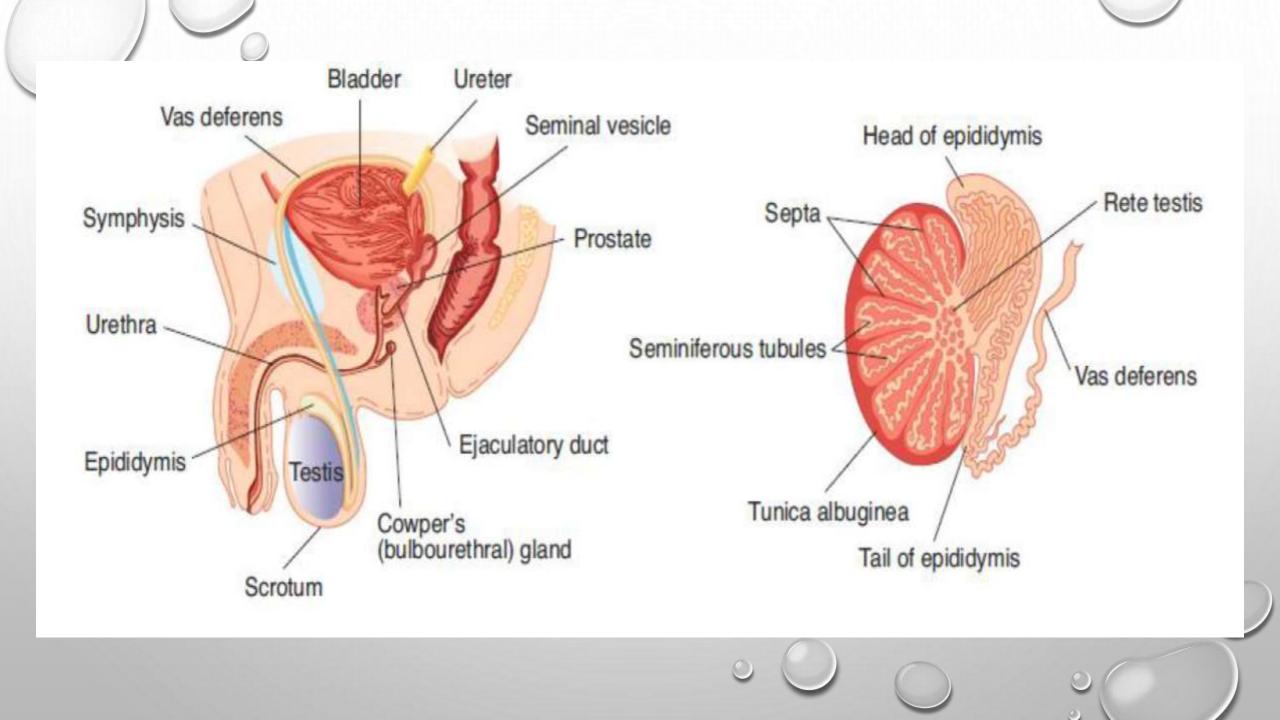

I. PRIMARY SEX ORGAN (TESTIS)

1) Seminiferous tubules

Lined by Spermatogonia & contain Sertoli cells.

2) Interstitial cells of Leydig

Secrete testosterone.



II. SECONDARY SEX ORGANS

External genitalia

1) Epididymis & Vas deferens	 Site of Storage of Sperms. Site of Maturation & Motility of sperms. After remaining in epididymis for 18 hours - 10 days, sperms develop motility. Sperms also become capable of fertilization (process called maturation.) Most sperms are stored in vasdeferens & small amount in epididymis. Sperms can remain stored and fertile for several months.
2) Seminal vesicles Secrete 60 - 80% of semen volume	 Secrete: a) Fructose: Fuel for the spermatozoa (200 - 800 mg %). b) Prostaglandins: help fertilization by: Help the sperms to Penetrate the cervical mucus. Cause reverse Peristaltic movement in uterus. c) Fibrinogen.
3) Prostate gland Secrete 13 - 33% of semen volume	 Secretes thin milky alkaline fluid to neutralizes the acidity of fluid of Vas deferens & Vagina. Prostate secretion contain: a) <u>C</u>a⁺⁺ & <u>C</u>lotting enzymes & <u>C</u>itric acid. b) <u>Fibrinolysin</u>.
4) Bulbourethral gland (Cowper gland)	- Secret mucous to lubricate urethra.

Penis & scrotum.

SPERMATOGENESIS

- Phases of spermatogenesis:
- Spermatogonia present in seminiferous tubule are non-motile stem cells.
- **Spermatogonia** divide by **MITOSIS** to form two cellular pools:
- A) **Additional stem cells:** for continuous renewal.
- B) **Type A spermatogonia:** which enter the spermatogenesis:
- 1) TYPE A SPERMATOGONIA divide by MITOSIS to form primary spermatocytes.
- Primary spermatocyte contain 46 chromosomes.
- 2) 1RY SPERMATOCYTES divide by MEIOSIS to form two Secondary spermatocytes.
- Secondary spermatocyte contain 23 unpaired chromosomes.
- then, secondary spermatocytes divide to form spermatid.
- 3) Metamorphosis of spermatids to produce Mature spermatozoa.
- It is the morphological changes in spermatid without cell division.
- It is called spermiogenesis or spermeation .
- Duration of spermatogenesis: 64 74 days in human.

Role of sertoli cells in spermatogenesis

- 1. Provide a **s**pecial environment for germinal cells development.
- 2. **S**ecrete a fluid that **s**upply nutrients for the developing sperm.
- 3. Spermiogenesis (Spermeation).
- It is the morphological changes in spermatid without cell division.
- Spermatids are attached to sertoli cells, which secrete digestive enzymes that remove most of the cytoplasm from the spermatids.
- Steps of spermiogenesis (Spermeation):
- > Losing some of the **c**ytoplasm.
- > Condensation of the chromatic material of the nucleus to form head.
- > Collecting the remaining cytoplasm & cell membrane to form tail.
- > Play a physical role in **Shaping** the head and tail of the sperm.

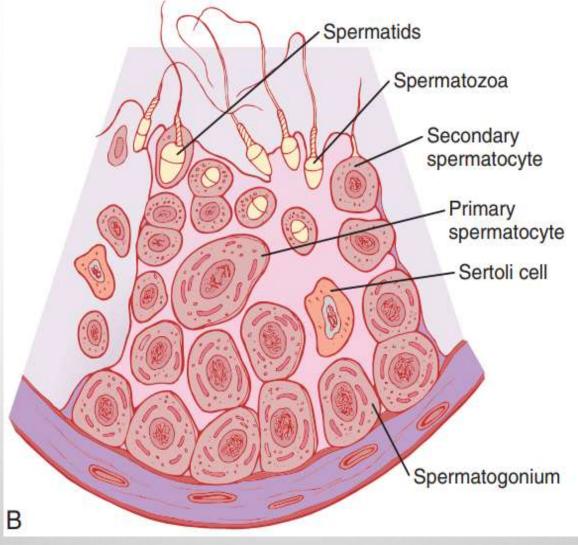
4. Formation of **BLOOD-TESTIS BARRIER** (Separate between blood & testis).

Formed by:

- Tight junction between adjacent sertoli cells near the basal lamina.

Functions:

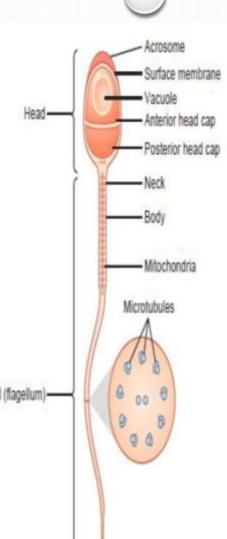
- 1) Protect the germ cells from blood-borne noxious agents (toxins).
- 2) Prevent antigenic products of germ cell division and maturation from entering the circulation ⇒ prevent autoimmune response.


- 5. Secrete some hormones & enzymes
- 1) Androgen-binding protein (ABP):

Maintain a high concentration of androgen in the tubular fluid.

- 2) **5 α reductase:** convert testosterone to more potent Dihydrotestosterone (DHT)
- 3) **Estradiol:** (source of 30% of male estrogen) Estrogen is needed as stimulatory factors in spermatogenesis.
- 4) Inhibin: has a -ve feedback inhibitory effect on the anterior pituitary prevent over secretion of FSH.
- 5) Mullerian inhibitory factor (MIF):

During fetal development ⇒ Inhibit formation of fallopian tube from Mullerian duct in male fetus.


Stages in the development of sperm from spermatogonia

STRUCTURE OF MATURE SPERMATOZOA

A. Head - Composed of the condensed nucleus. - The anterior part of the head is a thick cap - Composed of the condensed nucleus. - The anterior part of the head is a thick cap - Composed of the condensed nucleus. - The anterior part of the head is a thick cap

- called the acrosome.
- Acrosome is formed from Golgi apparatus
 & contains some enzymes:
 - **a) Hyaluronidase:** which digest proteoglycan filaments.
 - **b)** Proteolytic enzymes: which digest proteins.

- a) Central skeleton formed of 11
 Microtubules called the axoneme.
- **b)** Thin cell <u>Membrane</u> covering the axoneme.
- c) Collection of <u>M</u>itochondria in the proximal portion of the tail.
- Flagellar movement provides <u>M</u>otility for sperm at a velocity of 1 - 4 mm/minute.

Factors affecting spermatogenesis

1. HORMONAL FACTORS

1) FSH:

- Needed for growth and maturation of the testis.
- Needed for the normal functions of **sertoli cells**.
- Help production of androgen binding protein by sertoli cells.
- Help the last stages of spermatid maturation.

2) LH (ICSH):

- Needed for testosterone secretion by the *leydig cells*.
- So, it is called interstitial cells stimulating hormone .

3) Testosterone:

- Needed for development & maintenance of germinal epithelium.
- Needed for complete meiosis.
- Needed for spermiogenesis (spermeation).

4) Estrogen:

- Needed for spermiogenesis (spermeation).
- Formed by the sertoli cells by the effect of **FSH** stimulation.
- But, excessive estrogen ($\hat{\mathbf{1}}$ estrogen/androgen ratio) \Rightarrow **FSH** secretion \Rightarrow depression of spermatogenesis.

5) Thyroxin:

- Stimulates spermatogenesis via stimulatory effect on cell metabolism.
- Its absence as in **cretinism** ⇒ deficient spermatogenesis

6) GROWTH HORMONE (GH):

- Promotes early division of the spermatogonia
- Its absence as in **pituitary dwarfism** ⇒ deficient spermatogenesis.

2. Temperature

- Spermatogenesis requires lower temperature of about **32 o C**.
- Factors that maintain low testicular temperature:
- 1. The scrotum is **outside** the abdominal cavity.
- 2. Absence of subcutaneous fat in the scrotum.
- 3. Dartos muscle:
- ➤ Relax in hot weather ⇒ draw the testis away from warm abdomen.
- Contract in cold weather ⇒ attract the testis near warm abdomen.
- 4. Counter-current heat exchanger in Pampiniform plexus:
- The warm blood in **spermatic arteries** runs parallel but in the opposite direction to the cold blood in the **spermatic veins**.
- This allow counter-current exchange of heat from warm arterial blood to cold venous blood.

Increase testicular temperature ⇒ **\$\Pi\$ sperm count**

- 1. Hot baths (45 °C for 30 min/day) as in sauna.
- 2. Insulated athletic supporters.

3. Cryptorchidism

- Failure of testicular descend in the scrotum. (Un-descended testis).
- CAUSES: A) Obstruction of the inguinal canal.
 - B) Testosterone deficiency.
- **EFFECT**: A) Complete failure of spermatogenesis with sterility.
 - B) Mild impairment of endocrine function of testis.
- TREATMENT: (Must start as early as possible)
- A) Surgical dilatation of the inguinal canal.
- B) Testosterone administration.

3. DIET

1) PROTEIN:

- Needed for synthesis of sperms & pituitary gonadotropin.
- Complete protein starvation ⇒ arrest of spermatogenesis.

2) VITAMIN E:

- √ vitamin E

 irreversible tubular degeneration (in animals).
- This is not proved in human.

3) VITAMIN A:

-

√ vitamin A

keratinization & atrophy of germinal epithelium.

4) VITAMIN B:

- Vit. B act as catalyst for metabolic processes in tubular germ cells.

5) VITAMIN C:

- Vit. C is needed in testosterone synthesis
- ↓ vitamin C ⇒ inhibition of spermatogenesis.

4. CENTRAL NERVOUS SYSTEM

- The hypothalamus contains dopaminergic & noradrenergic neurons.
- Stimulation of these neurons ⇒ û release of gonadotropin releasing factor
- \Rightarrow stimulation of anterior pituitary \Rightarrow \Diamond gonadotropins secretions.
- So, **psychic** stimuli affecting hypothalamus ⇒ excitatory or inhibitory effect on Gonadotropin secretion ⇒ changes in the degree of fertility.
- e.g. Stress \Rightarrow \circlearrowleft dopamine \Rightarrow \circlearrowleft gonadotropin & \circlearrowleft prolactin.

5. IRRADIATION

- Irradiation \Rightarrow destruction of germinal epithelium (\updownarrow spermatogenesis).
- Certain doses of radiation spare sertoli cells & leydig cells. So, spare the endocrine functions of the testis.

6. HYPOXIA & TOXINS:

- Hypoxia & ischemia ⇒ depress spermatogenesis.
- Bacterial or chemical toxins ⇒ depress spermatogenesis.

Endocrine function of the testis

1. Testosterone(T)

It is a steroid hormone

- It is secreted by the leydig cells under the control of LH
- LH ⇒ û cAMP via LH receptors on cell membrane of leydig cells.
- Testosterone is formed also in the adrenal cortex.

Metabolism

1) most of the (T) is converted to 17-ketosteroid and excreted in urine.

But, 2/3 of the urinary 17-ketosteroid are of adrenal origin and 1/3 of

Urinary 17-ketosteroid are of testicular origin.

- 2) small amount of (T) is converted to estrogen (by aromatization).
- 3) conjugation of (T) with glucuronic acid or sulfate in liver.

Mechanism of action: like other steroids

- 1. The hormone passes the cell membrane, enter the cell and bind to specific *Cytoplasmic* receptors.
- 2. The resulting complex (steroid receptor complex) enters the nucleus ⇒
 Facilitate transcription of various genes ⇒ production of mRNA
- ⇒ new protein formation (testosterone induced protein).
- 3. The new proteins perform the actions of the hormone.

Actions of testosterone

I. During fetal life

- 1. Development of male sex organs: (internal genitalia).
- 2. Di hydro testosterone is essential for development of external genitalia & prostate.
- 3. Descend of testis into scrotum: during the last 2 months of gestation.

II. At puberty

A. On the primary sex organ

- Essential for spermatogenesis .
- Essential for growth & maturation & maintenance of testis.

B. On the secondary sex organs

- Essential for growth & maturation & maintenance of:
- Epididymis & vas deferens & seminal vesicles & bulbourethral glands.

C. On the secondary sex characters

1. The distribution of body hair

- General body hair increases.
- Beard appears.
- Hairline on scalp recedes antro-laterally.
- Baldness: decrease the growth of hair on the top of the head.
- Pubic hair grows with male pattern (triangle with apex up).

2. Voice

- Hypertrophy of the laryngeal mucosa and enlargement of the larynx ⇒ Deeper voice (low pitch voice).

3. **SKIN:**

- Increases thickness of the skin.
- Increases secretion of the sebaceous glands ⇒ **acne** formation.
- 4. Bone building: Wide shoulder & narrow pelvis.
- 5. Increased muscle bulk.

D. On the behavior

- Regulation of behavioral effects, boys becomes aggressive, develop interest in sex, increased libido.

E. General metabolic effects:

- ① **P**roteins synthesis (anabolic).
- ① Quantity of **b**one matrix & causes ca++ retention.
- ① **B**asal metabolic rate.
- ① R**BC**s number, by stimulating erythropoietin synthesis.
- ① Na+reabsorption in the distal convoluted tubules ⇒ Slight increase in the extracellular fluid & ABP.

- \triangleright About 20 % of plasma DHT is synthesized by the testis by the action of 5α reductase on testosterone.
- The remainder is derived from the peripheral conversion of testosterone to DHT by 5α reductase in some target cells.
- > DHT circulates in blood, with a plasma level that is 10 % of the testosterone level.
- > DHT -receptor complexes are **more stable** than testosterone receptor complexes in the target cells. Thus DHT is **more potent** than testosterone.

Functions of DHT

A. Fetus:

➤ Development of prostate and external genital organs.

B. At puberty:

- 1. Enlargement of prostate and external genitalia.
- 2. Hair growth all over the body.
- 3. Fall of scalp hair and bilateral temporal recession of frontal scalp hairline.
- 4. Increased secretion of sebaceous glands and acne formation.
- \triangleright Congenital 5 α -reductase deficiency produces male pseudo-hermaphroditism.

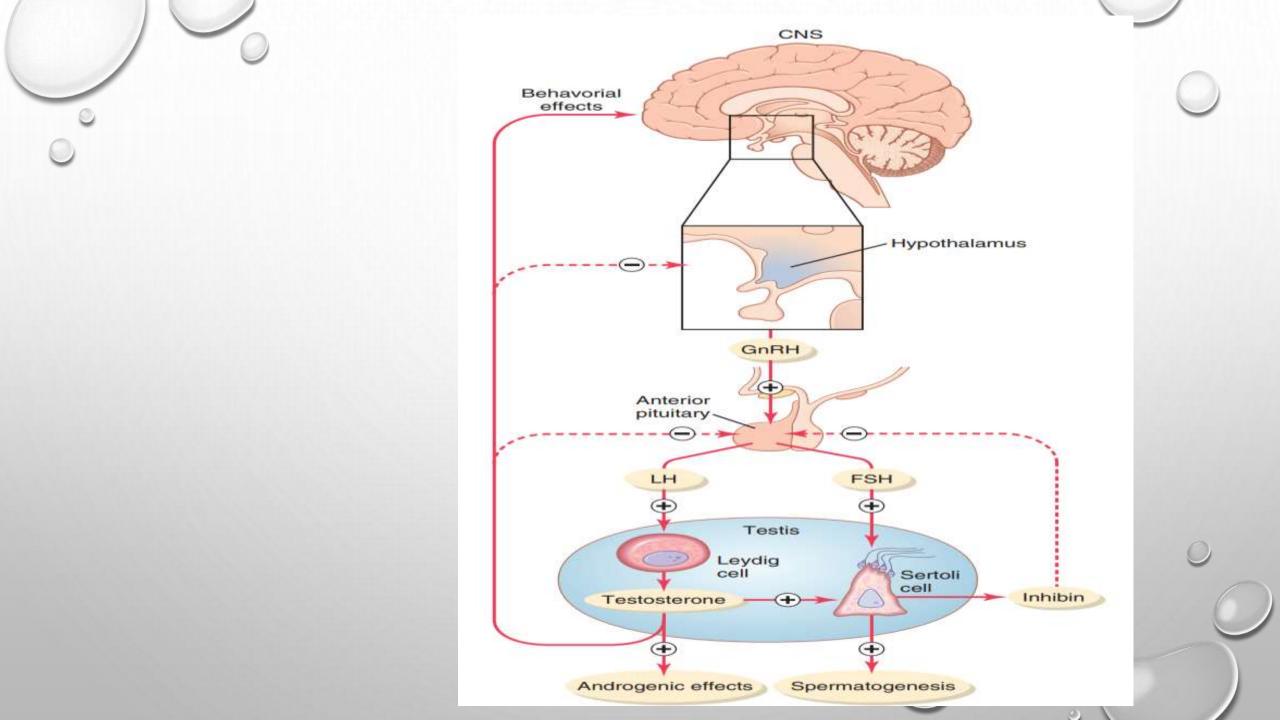
(II) Estrogens

- ➤ 80-90 % of estrogens in males are formed by action of aromatase on circulating testosterone.
- The remainder is secreted by the testes, some from **Leydig c**ells and some from **Sertoli** cells.
- > Very small amount secreted by the adrenal cortex.
- The plasma estrogen level in males is 20-50 pg. /ml.
- ➤ Elevation in the ratio of plasma estrogens to androgens → some feminization of the male body may occur as **gynecomastia**.

(III)Inhibin

- > Polypeptide hormone secreted by **Sertoli** cells in males.
- ➤ Inhibit FSH secretion by a direct negative feedback action on anterior pituitary gland. So, depress spermatogenesis.

Hormonal control of testicular functions Hypothalamic-hypo-physeal testicular axis


1-gonadotropin-releasing hormone(Gn-RH):

- ➤ peptide secreted by the hypothalamus →to the anterior lobe of the pituitary gland, through the hypophyseal portal circulation → release of **FSH** and **LH** hormones.
- ➤ The secretion of (*Gn-RH*) is continuous in male not cyclic as in female. This known as sexual differentiation of the hypothalamus.
- > (Gn-RH) stimulates the release of gonadotropin hormones through Cyclic AMP.

CONTROL OF Gn-RH

(A) Feedback control

- 1. Long loop between testosterone, hypothalamus and anterior pituitary gland.
- 2. Short loop between FSH and LH and the hypothalamus (negative feedback).
- (B) nervous factors: e.g. Emotional and physical stress act on the hypothalamus leading to decrease (*Gn-RH*) secretion →decreased secretion of pituitary gonadotropin and decrease fertility in men.

2- Pituitary gonadotropin (FSH & LH):

LH: tropic to *Leydig cells* \rightarrow stimulates testosterone secretion. So called **ICSH**.

FSH: tropic to *Sertoli cells* \rightarrow stimulates spermatogenesis, maintains high concentration of testosterone in seminiferous tubular fluid, and stimulates secretion of inhibin and estrogen.

- LH and FSH are *glycoproteins*. They exert their effects on their target tissues in the testis mainly by activating **cyclic AMP**, which in turn activates specific enzyme systems in the respective target cells.
- ➤ High testosterone blood level → -ve feedback inhibition of LH secretion at both hypothalamic and pituitary levels, and vice versa.
- ➤ High inhibin blood level → -ve feedback inhibition of FSH secretion from the anterior pituitary, and vice versa.

Testicular function tests

- **1- Estimation of urinary gonadotropins:** they increase in primary hypogonadism and decrease in secondary hypogonadism.
- **2- Estimation of 17-ketosteroids in urine :** they decrease in testicular disease. It reflects mainly adrenocortical secretion activity.
- 3- Semen analysis.
- **4- Testicular biopsy:** may be in **azospermic patients**. A sample of testicular tissue is taken by a needle to show whether male sterility is due to defect in spermatogenesis or due to obstruction of the duct system. Testicular biopsy may be done also to exclude testicular carcinoma.

