1/25

2. Neoplastic Proliferations of White Cells

~ Myeloid Neoplasms II

Ghadeer Hayel, M.D. Assistant professor of Pathology Mutah University Consultant hematopathologist 4/15/2025

The 2016 WHO Classification of MPN

Chronic myeloid leukemia, BCR-ABL1-positive

Chronic neutrophilic leukemia

Polycythemia vera

Primary myelofibrosis (PMF) Primary myelofibrosis, prefibrotic/early stage Primary myelofibrosis, overt fibrotic stage

Essential thrombocythemia

Chronic eosinophilic leukemia, not otherwise specified (NOS)

Myeloproliferative neoplasm, unclassifiable

Myeloproliferative Neoplasms (MPN)

2

Very common in proliferation

Its a hallmark of neoplasm

- A group of disorders characterized by the presence of mutated, constitutively activated tyrosine kinases or other related molecules in signaling pathways
 i lead to growth factor independence.
 Problem is with proliferation not differentiation so it can be differed from the previous diseases
- **Tyrosine kinase** Mutations do not impair differentiation.
- So the most common consequence is increase in production of one or more mature blood elements

- ► The neoplastic progenitors tend to seed secondary hematopoietic organs (spleen, liver, & LNs) → hepatosplenomegaly (neoplastic extramedullary hematopoiesis).
- MPNs often transform to AML

- Four major diagnostic entities are recognized:
- 1) Chronic myeloid leukemia (CML).
- 2) Polycythemia vera (PCV).
- 3) Primary myelofibrosis (PM).
- 4) Essential thrombocythemia (ET).

Associated with worse prognosis

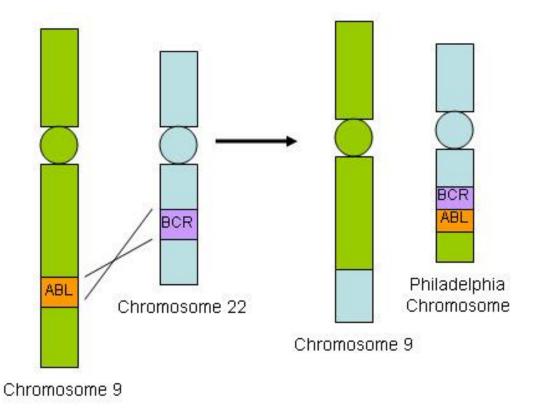
- CML is separated from the others by its characteristic BCR-ABL1 fusion gene -> produces a constitutively active BCR-ABL1 tyrosine kinase.
- The most common genetic abnormalities in "BCRABL-negative" MPNs are activating mutations in the tyrosine kinase JAK2.
- all MPNs have variable propensities to transform to: The mutation will transfer it into continuously active
- 1) a "<u>spen't phase</u>": resembling primary myelofibrosis
- 2) a "blast crisis" identical to AML
- Both triggered by the acquisition of other somatic mutations

Chronic Myeloid Leukemia (CML)

Pathogenesis

Gene fused with each other that have different sources and are different from each other

7


CML is distinguished from other MPN by the presence of a chimeric BCR-ABL gene, derived from portions of the BCR gene on chr.22 & the ABL gene on chr.9

95% of cases, the BCR-ABL gene is the product of a balanced t(9;22) translocation that moves ABL from chr.9 to a position on chr.22 adjacent to BCR.

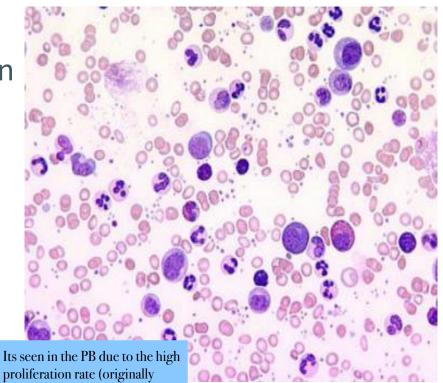
Translocation identified in some B-ALL.

Continuous uncontrolled proliferation

CML - Pathogenesis

Chronic Myeloid Leukemia (CML)

Pathogenesis


- Because BCR-ABL does not inhibit differentiation, the early disease course is marked by <u>excessive</u> production of relatively normal blood cells, particularly granulocytes & platelets.

CML - Morphology

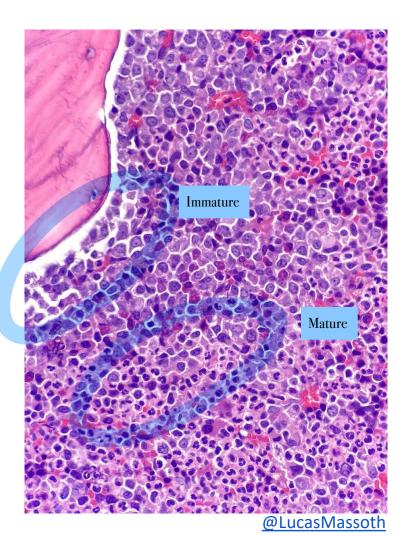
Peripheral blood

Leukocytosis

- ► Leukocyte count is ↑↑ (often >100,000 cells/µL).
- Circulating cells are predominantly neutrophils, metamyelocytes & myelocytes.
- Basophils, eosinophils & platelets are increased

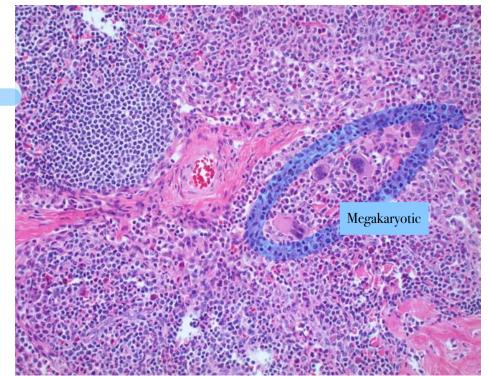
shouldn't be seen there)

CML – Morphology BM


 The bone marrow is hypercellular, ^ numbers of maturing granulocytic & megakaryocytic
 Will be less in size precursors.

And decreased nucleus

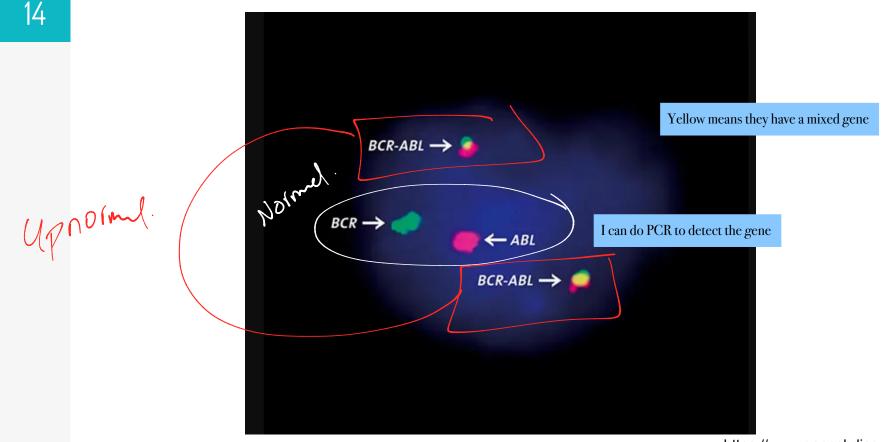
Cellurality in the BM examples


-10 y -> 90

~20y -> 70~80.

CML – Morphology Spleen

 Spleen resembles BM → extensive extramedullary
 hematopoiesis.


CML – Clinical features

13

- Peaks in 4th & 5th decades.
- Initial symptoms usually are nonspecific (e.g., easy fatigability, weakness, weight loss) Due to the neoplastic cells consuming of the body nutrients
- Necessary to distinguish CML from a leukemoid reaction (infection, stress, chronic inflammation..)

White blood cells will be increased to 80,000....

Fluorescence in situ hybridization (FISH) for the BCR-ABL translocation

CML - Clinical features

- Slowly progressive disease: Median survival is 3 years without treatment. Less than 5 is the normal range
- progress to accelerated phase) 5 19

Anemia, new thrombocytopenia (additional genetic mutations).

- Progress to blast phase:
- 1) 70% AML

15

Due to its affect to the progenitor cells

- 2) 30% ALL
- Rarely progresses to spent phase with fibrosis.
 CML

CML – Treatment

- Tyrosine kinase inhibitors, like Imatinib, induces sustained remissions with manageable toxicity and prevents progression to blast crisis, particularly in patients with early disease. (an example of targeted therapy)
- It suppress the proliferative drive that leads to the acquisition of additional mutations

17

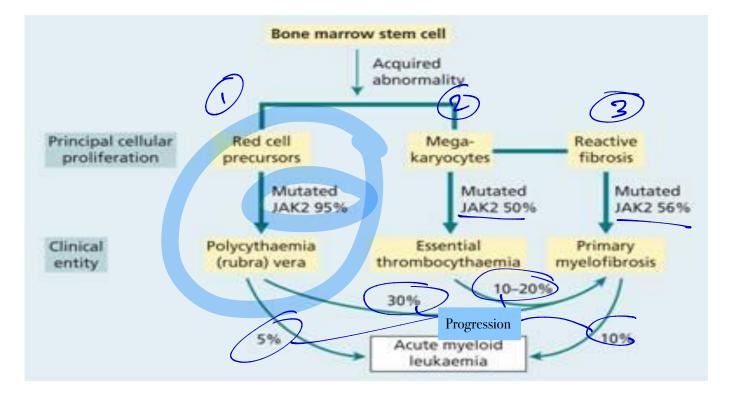
PC

Polycythemia Vera (PCV)

The smocking high altitude Chronic obstructive pulmonary disease It will have high level of erythropiotin cells

- Excessive proliferation of erythroid, granulocytic, and megakaryocytic elements -> panmyelosis
 Due to the increase of all cell types in marrow
- Most clinical signs & symptoms are related to an absolute increase in red cell mass.
- Must be distinguished from:
- 1. <u>relative</u> polycythemia \rightarrow results from hemoconcentration.
- 2. Unlike reactive <u>absolute</u> polycythemia → PCV is associated with low serum erythropoietin → a reflection of growth factor–independent growth of the neoplastic clone.

PCV - Pathogenesis


Base is differed

18

Strongly associated (> 97%) with activating point mutations in the tyrosine kinase JAK2.

- JAK2 normally acts in the signaling pathways downstream of the erythropoietin receptor.
- ▷ The most common JAK2 mutation → lowers the dependence of hematopoietic cells on growth factors for growth and survival.

PCV - Pathogenesis

19

PCV - Morphology

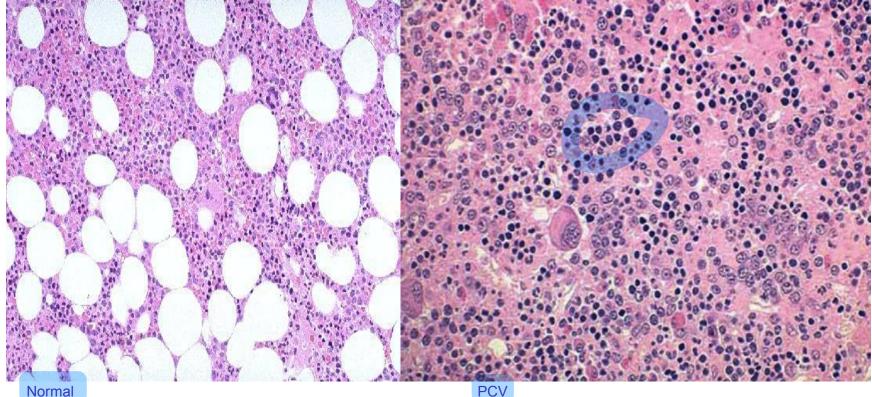
- The major anatomic changes in PCV stem from increases in blood volume and viscosity. Increase in RBCs in CV stem from increases
- ▶ Hemoglobin levels (Hb > 16,5 g/dl (♂), > 16 g/dl (♀))
- Congestion of many tissues is characteristic.
- Hepatomegaly & small foci of extramedullary hematopoiesis.
- ▷ Spleen usually is slightly enlarged → vascular congestion.

Due to high number of RBC

21

PCV - Morphology

- Thromboses & infarctions are common
 the increased viscosity and vascular stasis.
- Platelets produced from the neoplastic clone often are dysfunctional
 → elevated risk of thrombosis and bleeding Hemorrhages; often in GIT, oropharynx or brain.
- ▶ The peripheral blood often shows **basophilia**.


PCV - Morphology

- The bone marrow is hypercellular owing to increased numbers of erythroid, myeloid, and megakaryocytic forms.
- PCV often progresses to a spent phase where the marrow is largely replaced by fibroblasts & collagen -> increase
 extramedullary hematopoiesis.

PCV - Morphology

Islands of erythropoiesis very dark

Normal

PCV – Clinical features

- Insidious, usually in late middle age.
- Patients are plethoric & often cyanotic. Congested colour of the face
- Thrombotic and hemorrhagic tendencies & hypertension.
 Headache, dizziness, GIT (hematemesis & melena)

COMMON. Due to the sluggish blood flow

PCV – Prognosis

- Without treatment, death occurs from vascular complications within months.
- The median survival is increased to about 10 years by lowering the red cell count to near normal -> repeated phlebotomy.
- Prolonged survival → a propensity to evolve to a "spent phase" (resembling PM) ~10 years.
- Extensive marrow fibrosis, hematopoiesis shifts to the spleen, which enlarges markedly. Drive shift by the growth factor