Heme degradation

Fate of RBCs

- Life span in blood stream is 90-120 days, RBCs are phagocytosed and/or lysed
- Normally, lysis occurs extravascularly in the ER of reticuloendothelial system (liver, spleen and bone marrow).
 subsequent to RBC phagocytosis
- Lysis can also occur intravascularly (in blood stream).
- In the human body approx. 100 200 million RBCs are broken down every hour.
 Fe²⁺ → transported with transferrin and
- used in the next heme biosynthesis
- Not only Hb but other hemoproteins also contain heme groups which are degraded by the same pathway.

Handling of free (intravascular) hemoglobin

- Purposes: 1- Scavenge iron
 - 2- Prevent major iron losses
 - 3- Complex free heme (very toxic)
- 1- Haptoglobin: hemoglobin-haptoglobin complex is readily metabolized in the liver and spleen forming an iron-globin complex and bilirubin. Prevents loss of iron in urine.
- 2- Hemopexin: binds free heme. The heme-hemopexin complex is taken up by the liver and the iron is stored bound to ferritin.
- 3- Methemalbumin: complex of oxidized heme and albumin.

<u>Bilirubin metabolism</u>

- Bilirubin formation
- Hepatic bilirubin transport
 - A- Hepatic uptake
- Enterohepatic circulation

- Transport of bilirubin in plasma
- B- Conjugation C- Biliary excretion

Hepatic Bilirubin Transport

1. Hepatic uptake of bilirubin

UCB ~ Albumin complex separated (be) taken up Bilirubin — Plasma membrane of the liver

2. Conjugation of bilirubin

bound to Z protein

Microvillar membrane

Degradation of heme to bilirubin

-75% is derived from RBCs

- In normal adults this results in a daily load of 250-300 mg of bilirubin
- Normal plasma concentrations are less then 1 mg/dL

- Hydrophobic – transported by albumin to the liver for further metabolism prior to its excretion

<u>Normal bilirubin metabolism</u>

© Fleshandbones.com Baynes: Medical Biochemis

- Uptake of bilirubin by the liver is mediated by a carrier protein (receptor)
- Uptake may be competitively inhibited by other organic anions
- On the smooth ER, bilirubin is conjugated with glucuronic acid, xylose, or ribose
- Glucuronic acid is the major conjugate catalyzed by UDP glucuronyl transferase
- -"Conjugated" bilirubin is water soluble and is secreted by the hepatocytes into the biliary canaliculi
- Converted to stercobilinogen (urobilinogen) (colorless) by bacteria in the gut
- Oxidized to stercobilin which is colored
- Excreted in feces
- Some stercobilin may be re-adsorbed through enterohepatic circulation by the gut and reexcreted by either the liver or kidney

bilirubin-diglucuronide = **conjugated bilirubin** is soluble in water → ,,**direct bilirubin**"

Bile pigments:

- Bilirubin

- stercobilin

Clinical correlations Determination of bilirubin (Bil) in serum

Blood tests

- Bil reacts directly when reagents are added to the blood sample → conjugated bilirubin = direct Bil (up to 3.4 µmol/L)
- free Bil does not react to the reagents until alcohol (methanol) or caffeine is added to the solution. Therefore, the measurement of this type of bilirubin is indirect \rightarrow unconjugated bilirubin = indirect Bil (up to 13.6 µmol/L)
- -Total bilirubin measures both unconjugated and conjugated Bil (normal value up to 17 μ mol/L).

Bilirubin physiology

- Ligandins responsible for transport from plasma membrane to endoplasmic reticulum. They are necessary for intracellular transport of bilirubin, are also low at birth and reach adult levels by 3-5 days.
- Bilirubin conjugated in presence of UDPGT (uridine diphosphate glucuronyl transferase) to mono and diglucoronides, which are then excreted into bile canaliculi.

Enterohepatic Circulation

- Conjugated bilirubin is unstable and easily hydrolyzed to unconjugated bilirubin.
- -This process occurs nonenzymatically in the duodenum and jejunum and also occurs in the presence of β glucuronidase, an enteric mucosal enzyme, which is found in high concentration in newborn infants and in human milk.

The serum of normal adults contains ≤1 mg of bilirubin per 100 ml.
In healthy adults → The direct fraction is usually <0.2 mg/100 ml

The indirect fraction is usually <0.2 mg/100 ml

Jaundice

Definition of Jaundice

- Also called icterus
- A yellowish straining of the skin, conjunctiva, base of tongue palms and soles with bile pigments which are increased in plasma
- Can be seen on examination at serum bilirubin levels 27-35 μ mol/l (1.5 2 mg/dl)
- Pathophysiologic classification of Jaundice
 - Hemolytic Jaundice
 - Hepatic Jaundice
 - Obstructive Jaundice (cholestasis)
 - Genetic based jaundice
- Jaundice classification (according to type of bilirubin)
- Unconjugated hyperbilirubinemia: when direct bilirubin level is less than 15% of total serum bilirubin.
- Conjugated hyperbilirubinemia: when direct bilirubin level is greater than 15%

Prehepatic (hemolytic, unconjugated) jaundice

 Results from excess production of bilirubin (beyond the ability of liver to conjugate) following hemolysis

Causes

- Increased production of bilirubin due to extravascular hemolysis, extravasation of blood into tissues, intravascular hemolysis and errors in production of red blood cells
- Pyruvate kinase and glucose
 6-phosphate dehydrogenase
 deficiency
- Impaired hepatic bilirubin uptake as in CHF
- Ineffective erythropoiesis

 Impaired bilirubin conjugation Gilbert's and Crigler-Najarr syndromes Hyperthyroidism Liver diseases as in chronic hepatitis, cirrhosis, Wilson's disease

Laboratory findings

- UB \uparrow without bilirubinuria (50-150 µmole/l)
- Hemolytic anemia
- Hemoglobinuria (in acute intravascular hemolysis)
- Reticulocyte counts \uparrow (10-30 %; normal range <1 %)
- Urinary changes:
 - Bilirubin: absent
 - Urobilinogen: increased or normal
- Faecal changes: stercobilinogen: normal

Intrahepatic (conjugated) jaundice

- Due to a disease affecting hepatic tissues either congenital or acquired diffuse hepatocellular injury
- Impaired uptake, conjugation, or secretion of bilirubin
- Reflects a generalized liver (hepatocyte) dysfunction
- In this case, hyperbilirubinemia is usually accompanied by other abnormalities in biochemical markers of liver function

<u>Causes</u>

- Impaired or absent hepatic conjugation of bilirubin
 - Gilbert's and Grigler-Najjar
- Acquired disorders
 - Hepatocellular necrosis
 - Hepatitis, Cirrhosis, Drug-related
 - Sepsis
 - Infiltrative: TB, amyloid, lymphoma
 - Toxins
 - Hepatic crisis in sickle cell disease

Laboratory findings

- liver function tests are abnormal
- Both CB and UCB \uparrow
- Bilirubinuria († 50-250 µmole/l)
- Urobilinogen: normal or reduced
- Stercobilinogen: normal or reduced

Posthepatic (Obstructive) jaundice

- Caused by intra- and extra hepatic obstruction of bile ducts
- Plasma bilirubin is conjugated, and other biliary metabolites, such as bile acids accumulate in the plasma
- Characterized by pale colored stools (absence of fecal bilirubin or urobilin), and dark urine (increased conjugated bilirubin)
- In a complete obstruction, urobilin is absent from the urine

Causes Intrahepatic

- Blockage of Bile Canaliculi
- Dubin-Johnson syndrome
- Hepatitis-viral, chemical
- Infiltrative tumors

Extrahepatic

- Obstructive of bile ducts by tumors, CBD or CHD stone and Stenosis
- Acute and chronic pancreatitis
- Parasitic infections as Ascaris lumbricoides and liver flukes

Laboratory Findings

- Serum Bilirubin↑ (100-500 µmole/l)
- Fecal urobilinogen \downarrow (incomplete obstruction) or absent in (complete obstruction)
- Urobilinogenuria is absent in complete obstructive jaundice - Cholesterol ↑
- Bilirubinuria 1
- Urinary changes:
- 1-Bilirubin: increased 2- Urobilinogen: reduced or absent
- Faecal changes: stercobilinogen: reduced or absent

The causes of jaundice

Туре	Cause	Clinical example	Frequency
Prehepatic	hemolysis	autoimmune abnormal hemoglobin	uncommon depends on region
intrahepatic	infection	hepatitis A, B, C	common/very common
	chemical/drug	acetaminophen alcohol	common common
	genetic errors: bilirubin metabolism	Gilbert's syndrome Crigler–Najjar syndrome Dubin–Johnson syndrome Rotor's syndrome	1 in 20 very rare very rare very rare
genetic errors: specific proteins Wi autoimmune chr neonatal phy	genetic errors: specific proteins	Wilson's disease α_1 antitrypsin	1 in 200 000 1 in 1000 with genotype
	autoimmune	chronic active hepatitis	uncommon/ rare
	physiologic	very common	
Posthepatic	intrahepatic bile ducts	drugs primary bilary cirrhosis cholangitis	common uncommon common
	extrahepatic bile ducts	gall stones pancreatic tumor cholangiocarcinoma	very common uncommon rare

© Fleshandbones.com Baynes: Medical Biochemistry

	Pre-hepatic	Hepatic	Post-hepatic
Urine	No Bilirubin Urobilinogen ↑	There is bilirubin Normal urobilinogen	There is bilirubin Urobilinogen is absent
Faeces	Dark	Pale	Pale
Blood	 ↑Reticulocyte count ↑ Unconjugated bilirubin (up to 100µmol/L) Normal ALP and γ GT Normal AST and ALT PT Normal 	 Normal reticulocyte count ↑ Bilirubin – mixed conjugated & unconjugated ↑ ALP and γ GT ↑ AST and ALT ↑ PT – not correctable with Vit K 	Normal reticulocyte count [↑] Bilirubin (up to 1000µmol/L) – conjugated [↑] ALP and γ GT Normal AST and ALT [↑] PT – correctable with Vit K

Neonatal Jaundice

- Common, particularly in premature infants
- -Transient (resolves in the first 10 days), due to immaturity of the enzymes involved in bilirubin conjugation
- High levels of unconjugated bilirubin are toxic to the newborn due to its hydrophobicity it can cross the blood-brain barrier and cause a type of mental retardation known as kernicterus
- If bilirubin levels are judged to be too high, then phototherapy with UV light is used to convert it to a water soluble, non-toxic form
- If necessary, exchange blood transfusion is used to remove excess bilirubin
- Phenobarbital is oftentimes administered to Mom prior to an induced labor of a premature infant crosses the placenta and induces the synthesis of UDP glucuronyl transferase
- Jaundice within the first 24 hrs of life or which takes longer then 10 days to resolve is usually pathological and needs to be further investigated

Gilbert's syndrome

- Benign liver disorder considered the most common hereditary cause of increased bilirubin.
- A major characteristic is jaundice, caused by elevated levels of unconjugated bilirubin in the bloodstream.
- -The cause of this hyperbilirubinemia is the reduced activity of the glucuronyl transferase, which conjugates bilirubin and some other lipophilic molecules.
- It is caused by a 70%-80% reduction in the glucuronidation activity of the enzyme UDP-glucuronosyltransferase 1A1.
- $\frac{1}{2}$ of the affected individuals inherited it
- Males more frequently affected than females
- Onset of symptoms in teens, early 20's or 30's
- Can be treated with small doses of phenobarbital to stimulate UDP glucuronyl transferase activity

<u>Crigler - Najjar syndrome, type I</u>

- A very rare disease (estimated at 0.6 1.0 per million live births), and consanguinity increases its risk.
- Inheritance is autosomal recessive.
- -Type 1 is characterized by a serum bilirubin usually above 345 µmol/L (310 755)
- No UGT1A1 (UDP glucuronosyltransferase 1 family, polypeptide A1) expression can be detected in the hepatic tissue.
- -These children died of kernicterus (=bilirubin encephalopathy), or survived until early adulthood with clear neurological impairment.

Today, therapy includes:

- exchange transfusions in the immediate neonatal period,
- 12 hours/day phototherapy
- heme oxygenase inhibitors to reduce effect of hyperbilirubinemia
- oral calcium phosphate and -carbonate to form complexes with bilirubin in the gut,
- liver transplantation prior to the onset of brain damage.

<u>Crigler - Najjar syndrome, type I</u>

- A very rare disease (estimated at 0.6 1.0 per million live births), and consanguinity increases its risk.
- Inheritance is autosomal recessive.
- -Type 1 is characterized by a serum bilirubin usually above 345 µmol/L (310 755)
- No UGT1A1 (UDP glucuronosyltransferase 1 family, polypeptide A1) expression can be detected in the hepatic tissue.
- -These children died of kernicterus (=bilirubin encephalopathy), or survived until early adulthood with clear neurological impairment.

Today, therapy includes:

- exchange transfusions in the immediate neonatal period,
- 12 hours/day phototherapy
- heme oxygenase inhibitors to reduce effect of hyperbilirubinemia
- oral calcium phosphate and -carbonate to form complexes with bilirubin in the gut,
- liver transplantation prior to the onset of brain damage.

Crigler-Najjar syndrome, type II

Differs from type I in several aspects:

- 1- bilirubin levels are generally below 345 μ mol/L.
- 2- Some cases are only detected later in life because of lower serum bilirubin, kernicterus is rare in type II.
- 3- bile is pigmented, instead of pale in type I or dark as normal.
- 4- UGT1A1 is present at reduced but detectable levels (typically <10% of normal), because of single base pair mutations
- 5- therefore, treatment with phenobarbital is effective, generally with a decrease of at least 25% in serum bilirubin.
- The inheritance pattern of Crigler Najjar syndrome type II has been difficult to determine, but is generally considered to be autosomal recessive.

Dubin-Johnson and Rotor's syndromes

- Characterized by impaired biliary secretion of conjugated bilirubin
- Present with a conjugated hyperbilirubinemia that is usually mild