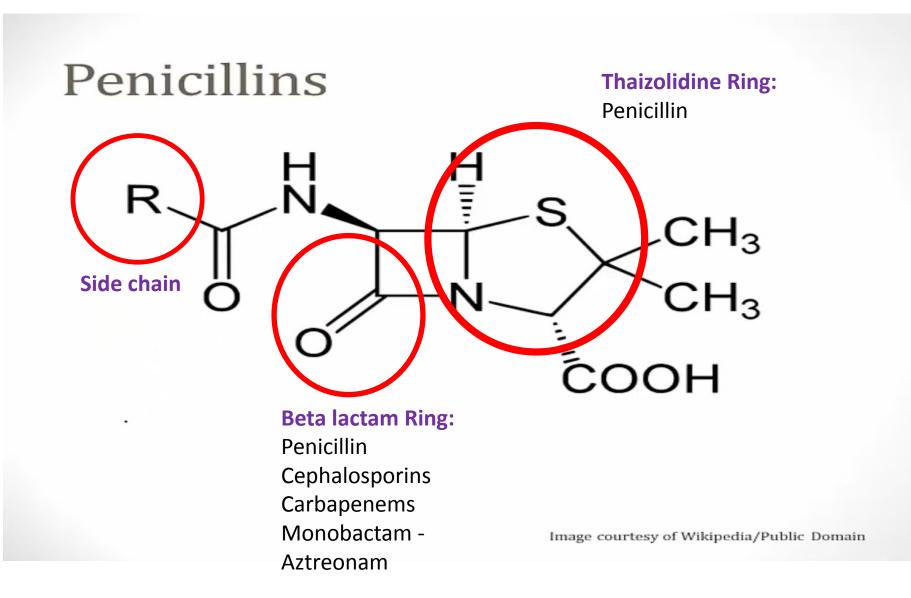
the **ANTIBIOTICS** lecture

Alaa Hasan Alali MD. SBIM. SFID.

Consultant, Internal Medicine and Infectious Diseases

Nothing to disclose ...

Agenda

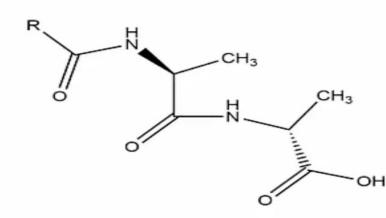

- 1. Beta Lactams:
 - 1. Pencillins
 - 2. Cephalosporins
 - 3. Carbapenems
 - 4. Monobactam-Aztreonam
- 2. Sulfonamide

- 3. Protein Synthesis Inhibitors
 - 1. Aminoglycosides
 - 2. Macrolides
 - 2 Tatraqualinaa

Beta Lactam Antibiotics

- 1. Penicillins,
- 2. Cephalosporins,
- 3. Carbapenems,
- 4. Aztreonam

PENICILLINS


Types of **PENICILLINS**

- Natural
 - Pen G, Pen VK
- Aminopenicillins
 - Amoxicillin, Ampicillin
- Anti Staphylococcus
 - Oxacillin, Nafcillin, Dicloxacillin
- Anti Pseudomonal
 - Piperacillin, Ticarcillin

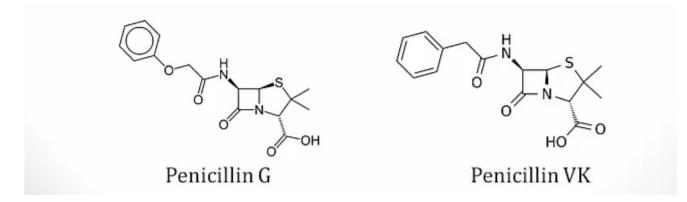
Mechanism of action

- Penicillin binding proteins >> Inactivates enzymes (D-ala-D-ala)
- Wall breakdown >> Autolysis >> cell death (Bactericidal)
- The same mechanism for all beta lactam antibiotics 😒

Penicillin Mechanism of Action

D-Ala-D-Ala Terminus

R


Penicillin

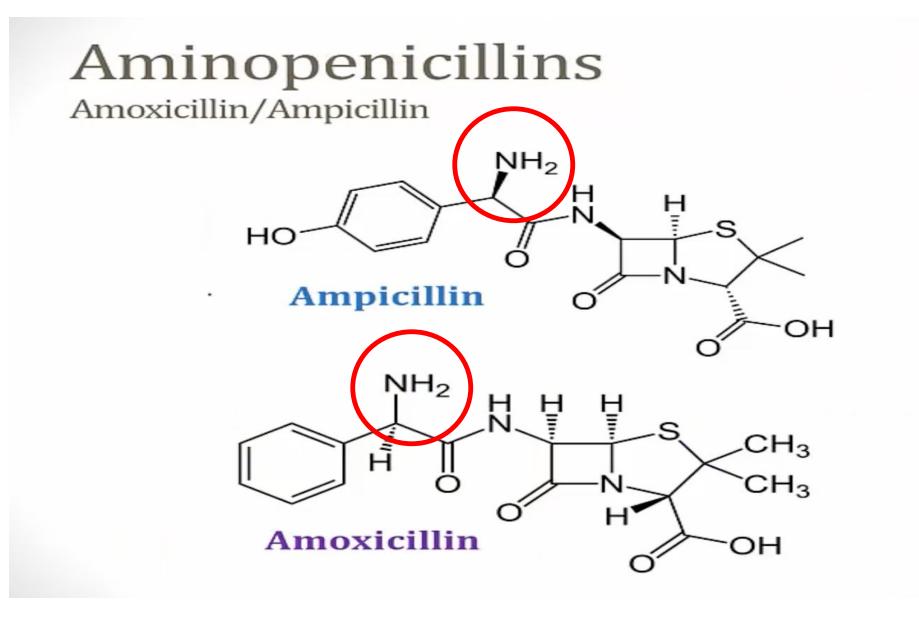
Omargs10/Wikipedia

Natural Penicillins

Fungal !!

- Penicillin G (IM and IV)
- Penicillin VK (oral)
 - Probenecid (Gout drug) >> Inhibits renal secretion PCN >> Boosts PCN levels
 → co-administered in special circumstances

Penicillin G and VK

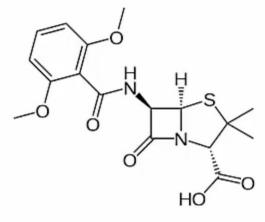

Clinical Uses

- <u>Narrow spectrum</u> >> few specific modern uses
- Gram positives
 - Strep pyogenes (strep throat)
 - Actinomyces
- Treponema Pallidum (syphilis)
- Rare uses (only in susceptible isolates)
 - Neisseria meningitides
 - Strep. pneumonia

Aminopenicillins

Amoxicillin, Ampicillin

- Amoxicillin (oral)
- Ampicillin (IV) >> Poor bioavailability when given orally
- Penetrate porin channel of gram-negative bacteria
- Sensitive to beta lactamase enzymes
- Covers penicillin bacteria plus some gram negatives


Aminopenicillins

- Amoxicillin, Ampicillin
- Bacterial
 - H. Influenza, E. Coli, Proteus, Salmonella, Shigella
 - *Listeria* (gram +)
- Main Clinical Uses
 - Otitis Media, Bacterial sinusitis
 - Meningitis
 - Newborns, elderly
 - Listeria coverage

Anti-Staphylococcal Penicillins

Oxacillin, nafcillin, dicloxacillin

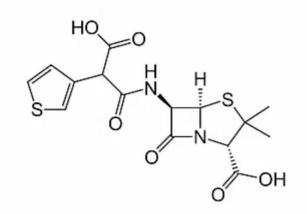
- High frequency of adverse effects (interstitial nephritis)
- Covers Staph Aureus (non-MRSA) and most strep
- Side chain protects B-lactam from staph penicillinase
 - Prototype: Methicillin >> No longer used

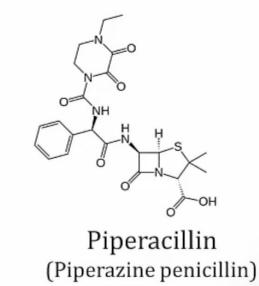
Methicillin

Anti-Staphylococcal Penicillins

Oxacillin, nafcillin, dicloxacillin

- Common uses
 - Community acquired cellulitis
 - Impetigo
- Staph endocarditis based on culture data
- Side effects similar to penicillin




Anti-Pseudomonal Penicillins

Ticarcillin, Piperacillin

- Greater porin channel penetration
- Effective against *Pseudomonas aeruginosa*
- Susceptible to B-lactamases!!!
 - Given with B-lactamase inhibitor
- Broad-spectrum antibiotics
 - Most gram-positive (not MRSA)
 - More gram-negative (pseudomonas)
 - Most anaerobic bacteria
- Hospitalized patients with sepsis/PNA

Ticarcillin (Carboxypenicillin)

Penicillins

Resistance

• Be

- Mc B-Lactamase Inhibitors
 - Clavulanic Acid, Sulbactam, Tazobactam
- Re Inhibit bacterial B-lactamase
 - Added to some penicillins to expand coverage

ds

- Aminopenicillins
 - Antistaphylococcal penicillins
- Little/no effect used alone
 - Some other penicillins
 - Some cephalosporins
- Many gram negative bacteria and Staphylococcus aureus

B-Lactamase Inhibitors

Clavulanic Acid, Sulbactam, Tazobactam

- Used with aminopenicillins
 - Amoxicillin / Clavulanicacid (Augmentin)
 - Ampicillin / Sulbactam
 - Increases activity against **<u>S. Aureus, H. flu</u>**
 - Also increases activity against anaerobes (B. fragilis)
- Used with Anti-Pseudomonal penicillins
 - Ticarcillin-clavulanate
 - Piperacillin-tazobactam (Zosyn)
- Common uses:
 - Otitis media/sinusitis (Broad-spectrum)
 - Bite wounds (Polymicrobial with anaerobes)
 - Hospitalized patients with sepsis / PNA

Hypersensitivity (allergic) reactions

- Commonly leads to hypersensitivity (allergic reaction)
 - 1st exposure: Sensitization
 - 2nd exposure: Hypersensitivity reaction
- Symptoms resolve on stopping drug

- Hypersensitivity (allergic) reactions
- Acute "immediate"
 - Type I, IgE-mediated
 - Usually within 1 hour of taking drug
 - Histamine release
 - Itching, urticaria
 - Bronchospasm
 - Anaphylaxis

James Heilman, MD

Maculopap

- Type-IV
- <u>Days or</u>
- Most cc
- Itchy or
- Absence
- Commc pharyn_{

ven for

Wikipedia/Public Domain

Romano A et al. Diagnosis of nonimmediate reactions to B-lactam antibiotics. Allergy 2004

Skin F • Immune mediated, CD8 T-cells play important roll

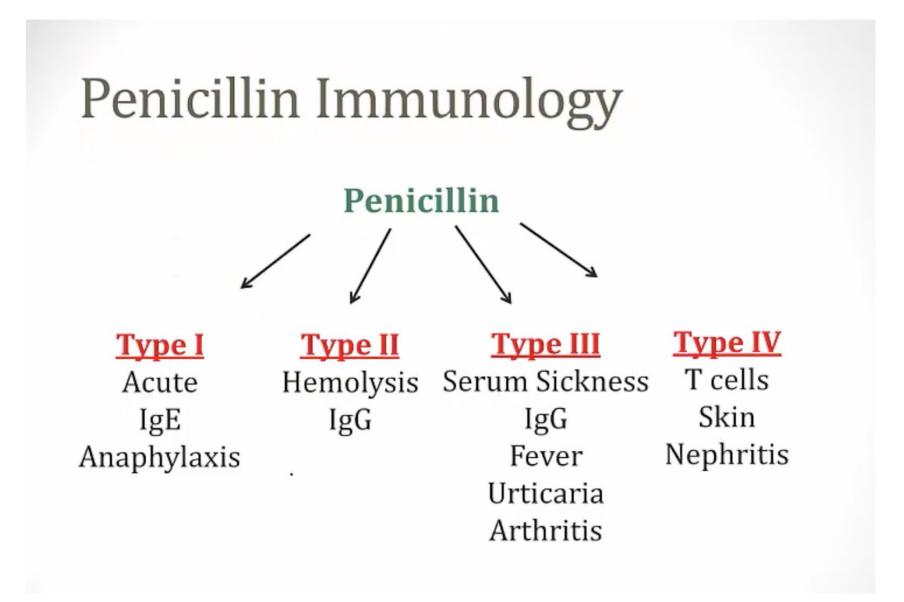
- Re-challenge with drug can cause recurrence
- • Antibiotic associations:
 - Sulfonamides (TMP-SMX)
 - Aminopenicillins
 - Cephalosporins
- Toxic epidermal necrolysis

• Stev

- Severe form SJS (>30% skin)
- Mortality: *SJS* 1-5%; *TEN* 25-35%

Dr. Thomas Habif/Wikipedia

Interstitial Nephritis


- Considered a Type IV hypersensitivity reaction. (T cells & Mast cells)
- <u>Classic presentation</u>
 - Fever
 - Oliguria, Increased BUN/Cr
 - Eosinophils in urine OR White cells and WBC casts "sterile pyuria"

Hemolytic Anemia

- Type II hypersensitivity
- High doses can lead to extrinsic hemolytic anemia
 - PCN binds to surface RBCS >> Elicits immune response >> Antibodies against PCN bound to RBCS >> Direct Coombs test: *positive*

Hypersensitivity (allergic) reactions

- Serum Sickness
 - Type III hypersensitivity reaction
 - <u>Days/weeks</u> after exposure
 - Immune complex disorder (IgG)
 - Complement activation
- Urticaria, fever, arthritis, lymphadenopathy

C. Difficile Infection

- Diarrhea following antibiotic therapy >> Antibiotic depletes normal intestinal flora >> C. Difficile growth → pseudomembranous colitis
- May occur with any antibiotic, Frequent associations:
 - Clindamycin
 - Fluoroquinolones
 - Cephalosporins
 - Penicillins

Jarisch-Herxheimer Reaction

- Occurs with PCN therapy for *spirochete* infections, Classically occurs in <u>syphilis</u>
 - Febrile syndrome
 - Fever, chills, flushing, hyperventilation
 - Usually 2 hrs after starting therapy
 - Due to bacterial cell death \rightarrow immune response

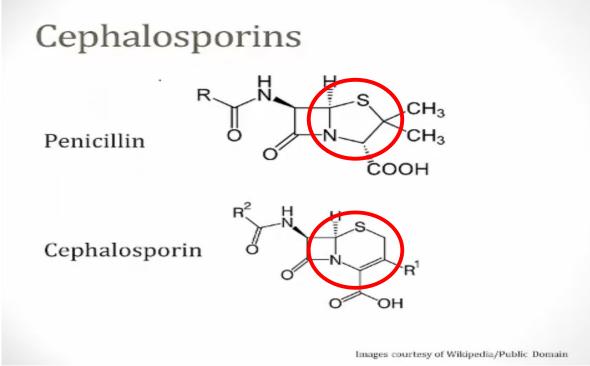
Other Beta Lactam Antibiotics

Cephalosporins, Carbapenems, Aztreonam

• Similar mechanism to penicillin

• Bind transpeptidases (penicillin-binding proteins/PBPS)

• Prevent peptidoglycan crosslinking


• Autolysis >> Usually bactericidal

• Potentially susceptible to beta lactamase

• Hyper sensitivity and adverse reactions are similar to Penicillins

CEPHALOSPORINS

- Divided into 1st through 5th generation
 - 1st generation: Mostly gram positive coverage >> Successive generations: increased gram (-) coverage

1st Generation Cephalosporins

Cefazolin, cephalexin

- Developed to treat <u>S. Aureus resistance to penicillin</u>
- Covers many gram (+) including S. Aureus (not MRSA)
 - Stable against S. Aureus beta lactamase
 - Does not cover enterococcus or listeria
 - Susceptible to gram negative beta lactamases
- Main uses:
 - Surgical wound (skin) infections
 - Cefazolin given pre-op for prevention

2nd Generation Cephalosporins

Cefuroxime, Cefoxitin, Cefotetan

- Developed to treat amoxicillin-resistant infections
- Increased affinity for gram (-) PBPS
- More resistant to beta lactamase
- Increased gram (-)
 - H. influenza, Enterobacter, Proteus
 - E. coli, Klebsiella, Serratia, N. gonorrheae
- Increased anaerobic coverage (B. fragilis)

- Cefuroxime (oral):
 - Otitis media (S. pneumonia, H. flu)
 - UTI in children (E. coli; no fluoroquinolones)
- Cefoxitin/cefotetan (IV):
 - PID (covers Neisseria; also give doxycycline for Chlamydia)
 - Pre-op in children with appendicitis
 - E. coli, Covers gram negatives and some anaerobes
 - Usually given with metronidazole

3rd Generation Cephalosporins

Ceftriaxone, Cefotaxime, <u>Ceftazidime</u>

- Broad gram (-) coverage
 - More resistance to beta lactamase enzymes
 - More gram (-) PBP affinity
- Ceftriaxone, Cefotaxime: Poor coverage pseudomonas

<u>Ceftazidime: Covers pseudomonas</u>

• Most achieve good CSF penetration (meningitis)

Cephalosporins

Ceftriaxone

- Commonly used for
 - N. gonorrhea
 - Commonly used in meningitis
 - Active against S. pneumonia, N. meningitidis
 - Good CSF penetration

• Ceftazidime

- Used in hospitalized patients with
 - Gram negative infections
 - Sepsis/pneumonia

Cephalosporins

4th Generation Cephalosporins

Cefepime

- Broad spectrum (>3rd generation drugs)
 - MSSA
 - Many gram (+)'s
 - Many gram (-)'s including pseudomonas
- <u>Resistant to some ESBL</u>
- Hospitalized patients with gram (-) infections

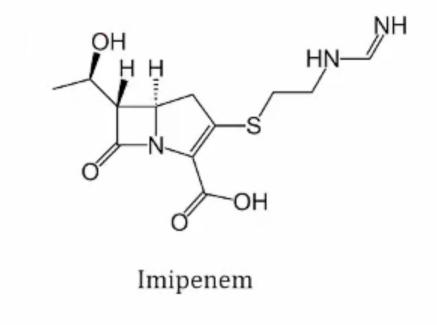
Cephalosporins

5th Generation Cephalosporins

Ceftaroline, Ceftobiprole

- Active against MRSA
 - Low affinity for most other beta-lactams
 - Covers MRSA and VRSA
 - Some gram negatives (not pseudomonas)
 - Studied in skin infections and pneumonia

• Ceftobiprole


• <u>Covers pseudomonas as will !!</u>

CARBAPENEMS

Carbapenems

Imipenem, meropenem, ertapenem, doripenem

• B-lactams, *Resistant to cleavage by most B-lactamase*

Carbapenems

• Dri ESBL

- Extended Spectrum Beta Lactamase
- Brc Plasmid-mediated bacterial enzymes
 - Confer resistance to most beta-lactam antibiotics

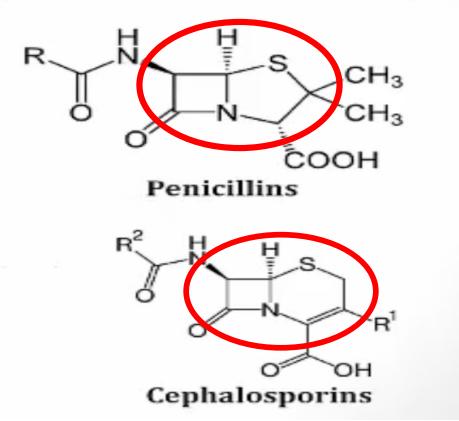
าร)

- Penicillins, cephalosporins, aztreonam
- Found only in gram-negative bacteria:
- Us
- Pseudomonas, Klebsiella, E. coli
- Enterobacter, Salmonella, Serratia, Shigella

Carbapenems

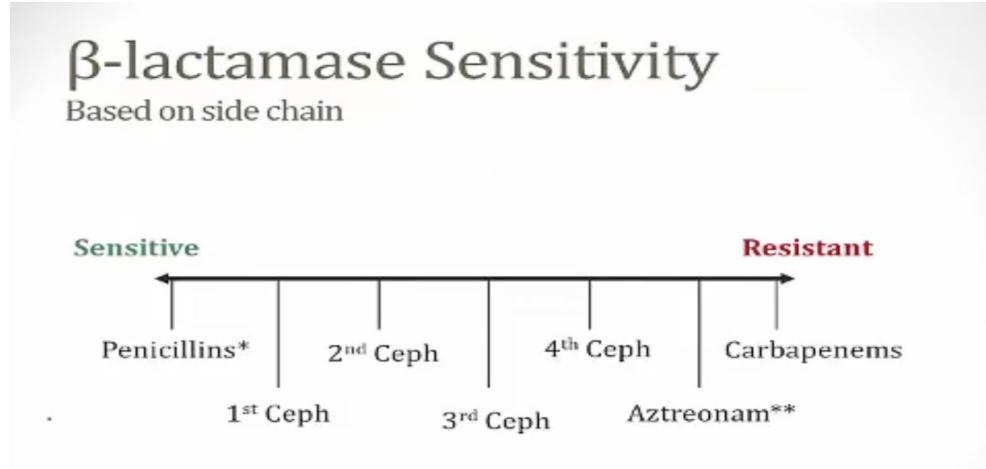
Imipenem


- First Common side effects
- Met Naușea, vomiting, diarrhea
 - meta Skin rash
 - (enz <u>Neurotoxicity</u>
- Imip Seizures >> Inhibition of GABA receptors >> Especially
 - C at high doses or with renal failure >> <u>Lower risk with</u>
 - N <u>meropenem</u>
- <u>Ertapenem >> Once daily dosing</u>


toxic

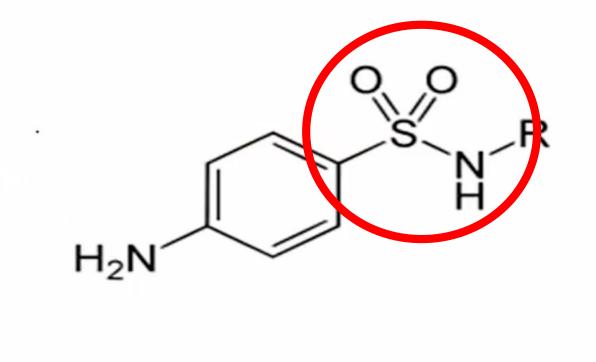
AZTREONAM - monobactam -

Aztreonam


Monobactam: β-lactam ring not fused to another ring

Aztreonam

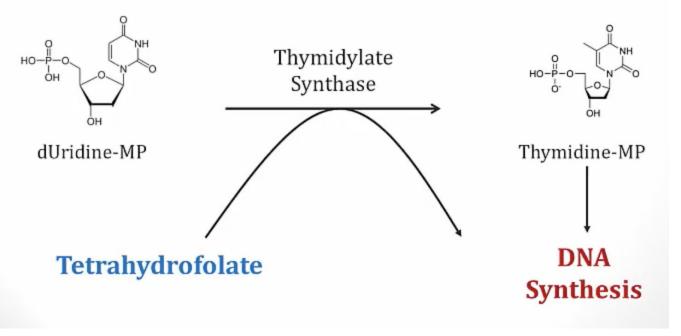
- Binds penicillin-binding protein 3 (PBP-3)
 - Found in gram negative bacteria ONLY >> not active against G+ or anaerobes
 - Bactericidal
- Limited susceptibility to B-lactamase
 - Some resistance in ESBL bacteria
- Active against pseudomonas
- Given IV, and can Synergistic with aminoglycosides
- No cross reactivity in penicillin allergic patients >> main indication: penicillin allergy

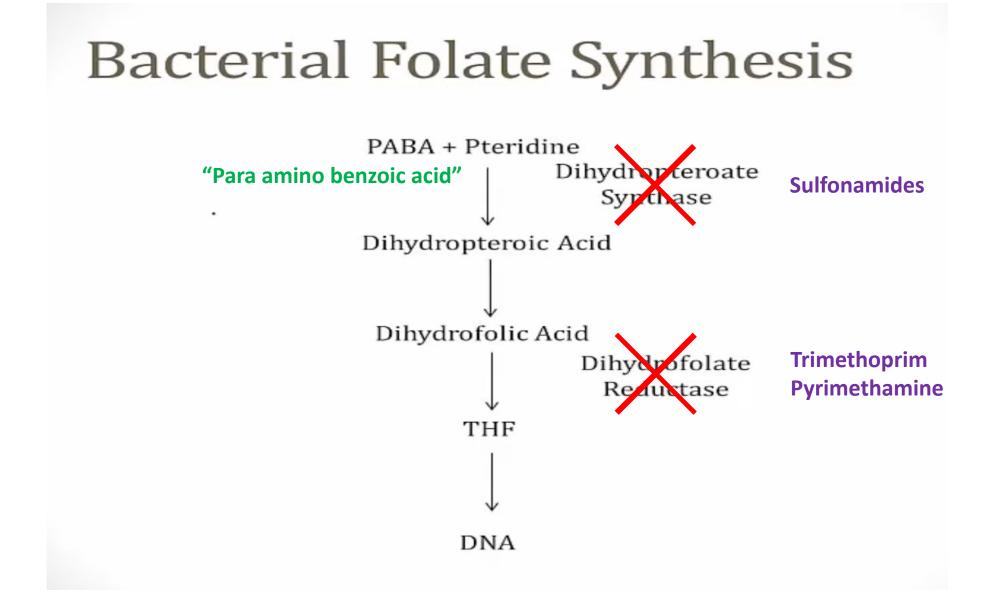


* Anti-staphylococcal penicillins resist staph penicillinase ** Gram negatives only

SULFONAMIDE

Sulfonamide Antibiotics

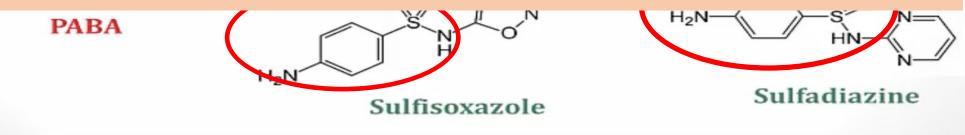

- Sulfonamide group = SO₂-N
- "Sulfa" drug = Contains sulfonamide group



Sulfonamide

Bacterial Folate Synthesis

- Folate required for thymidine/DNA synthesis
- Mammalian cells: <u>use exogenous</u> folate (diet)
- Bacterial cells: no exogenous folate (must synthesize)


Sulfonamides

Sulfamethoxazole (SMX), sulfisoxazole, sulfadiazine

- Mimics of PABA
- Competitively inhibit dihydropteroate synthase

Sulfonamides Resistance

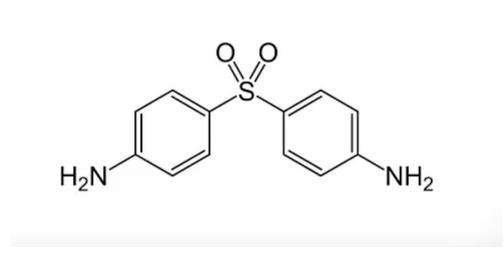
- Increased PABA
- Altered dihydropteroate synthase
- Decreased uptake

Sulfonamide

Sulfamethoxazole (SMX), sulfisoxazole, sulfadiazine

- Usually given with trimethoprim
 - TMP-SMX (Bactrim)
 - Sequential block of THF synthesis
- Sulfadiazine
 - Silver-sulfadiazine (cream for burns)
- Sulfadiazine and pyrimethamine
 - Also sequential block of THF synthesis
 - Used in toxoplasmosis (HIV)

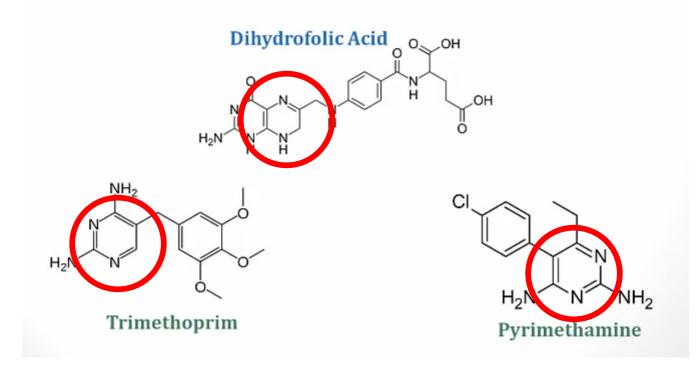
Sulfonamide Toxicity


- Hypersensitivity reactions ~3% of patients
- Sulfonamides Hypersensitivity (allergic) reactions >> Similar to penicillin allergic reactions: Anaphylaxis, Maculopapular rash, Serum sickness (fever, rash, arthritis), Interstitial nephritis
- <u>Stevens-Johnson Syndrome / Toxic epidermal necrolysis</u>
- Photosensitivity >> Drug interaction with UV light, Caused by many drugs, Common drugs: *Tetracycline, Sulfonamides, Amiodarone*

Sulfonamide Toxicity

- Hemolysis in G6PD deficient >> <u>Sulfonamides are oxidants</u> >> trigger for hemolyisis. Other triggers >> <u>Dapsone</u>
- Kernicterus in infants
 - Sulfonamides → increased free bilirubin levels >> Unconjugated bilirubin is neurotoxic >> Basal ganglia, brainstem nuclei >> Permanent neurologic impairment >> Movement disorder (chorea, tremor), Hearing loss, Limited gaze
- Raise warfarin levels
 - Displaces warfarin from albumin >> INR level may rise in patients on warfarin therapy

Dapsone


- Not a sulfonamide
 - Competes with PABA for dihydropteroate synthase
- Two main uses:
 - Mycobacterium leprae (leprosy)
 - Pneumocystis jiroveci

Trimethoprim / Pyrimethamine

Mechanism of Action

- Inhibit dihydrofolate reductase
- Similar structure to dihydrofolate

TriMethoPrim - SulfaMethoXazole

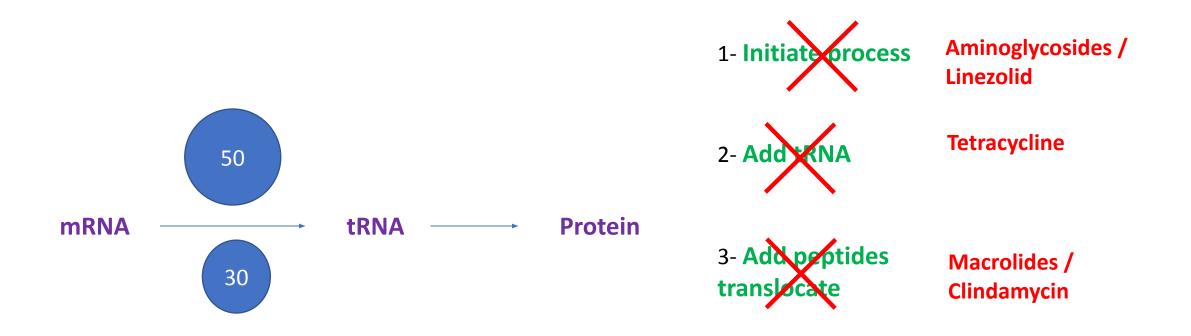
Bactrim TMP-SMX

- Combination is *bactericidal*
 - Covers many gram (+ & -)
 - Does not cover pseudomonas or B. fragilis (anaerobes)
 - Covers some fungi and parasites
- Common uses:
 - Urinary tract infections (covers E. Coli well)
 - Pneumocystis pneumonia in HIV (treatment/prophylaxis)
- TMP-SMX <u>Pregnancy</u>
 - Risk of kernicterus
 - Disrupts folic acid metabolism

Trimethoprim / Pyrimethamine Toxicity

- Bone marrow suppression
 - Pancytopenia: megaloblastic anemia, leukopenia, thrombocytopenia
- Can alleviate with <u>leucovorin</u> (folinic acid)
 - Converted to THF >> Does not require dihydrofolate reductase >> "Leucovorin rescue"

PROTEIN SYNTHESIS INHIBITORS


Protein Synthesis Inhibitors

- Aminoglycosides
- Macrolides
- Tetracyclines
- Chloramphenicol X
- Clindamycin
- Linezolid
- Streptogramins

Protein Synthesis Inhibitors

- Bacterial Protein Synthesis
 - DNA \rightarrow Transcription \rightarrow RNA \rightarrow Translation \rightarrow Protein

AMINOGLYCOSIDES

Aminoglycosides

Gentamicin, Neomycin, Amikacin, Tobramycin, Streptomycin

- Block initiation of protein synthesis
 - Primarily bind 30s >> Misreading of genetic code >> Bacteria cannot divide, produce cellular proteins >> Cell death (bactericidal)
- Require O₂ for transport into cells >> Not effective against anaerobes
- Not transferred into eukaryotic cells
 - Not effective intracellular organisms (Rickettsia/Chlamydia)
- Rarely Used alone to treat serious gram (-) infections
- What about: TB, ESBL, CRE, Abscess?

Aminoglycosides

• Streptomycin can be used for tuberculosis / Brucellosis

Resistance

• N(

- "Aminoglycoside modifying enzymes"
- Bacteria acquire enzymes that modify drug structure
- Modified structure binds poorly to ribosomes
- Phosphorylation (mediated by aminoglycoside kinases)
- Adenylation/acetylation (mediated by transferases)
- Ampicillin/gentamycin for newborn meningitis
- Pip/Tazo + tobramycin for CF patients (pseudomonas)

Aminoglycosides

Adverse Effects

- Aminoglycosides Monitoring
 - Plasma levels need to be monitored
- No Trough level: Just before next dose
 - Peak level: Short time after dose
 - High trough = risk of toxicity
- •N Low peak = less effective therapy

Rare side effect >> Can block/limit release of ACh at neuromuscular junctions

• **Pregnancy** class D >> Reports of renal and ototoxicity in fetus

MACROLIDES

Macrolides

Azithromycin, Clarithromycin, Erythromycin

- 50S ribosomal subunit
- Covers many (G+) cocci, esp. strep and Some (G-) coverage
- Concentrated inside macrophages, other cells
- Effective against intracellular pathogens
 - Chlamydia (obligate),
 - Legionella (facultative)

Macrolides

- Community acquired pneumonia
 - Azithromycin covers Strep, H. flu, Atypical inf.
 - Good for penicillin allergic patients
- Chlamydia infection
 - Azithromycin (safe in pregnancy)
 - Often co-administered with Ceftriaxone (gonorrhea)

• Erythromycin

- Binds to motilin receptors in GI tract >> Can be used in GI motility disorders
- Clarithromycin >> Part of triple therapy for H. pylori

Macrolides Adverse Effects

- Nausea, diarrhea, abdominal pain (motility)
 - Erythromycin worst offender
- Prolonged QT on EKG
 - Erythromycin also worst offender
- Acute cholestatic hepatitis >> AST/ALT/Alk Phos/Bilirubin
- **Rash** >> Maculopapular allergic reaction
- P450 Enzyme Inhibitors >> Will raise serum levels of P450 metabolized drugs >> *Theophylline, Warfarin*

TETRACYCLINES

Tetracyclines

Tetracycline, doxycycline, demeclocycline, minocycline

- Transported into bacterial cells
 - Binds 30S ribosome
 - Prevents attachment of tRNA
- Demeclocycline
 - <u>Not used as an antibiotic</u> >> ADH antagonist >> Given in SIADH >> Causes nephrogenic DI to reverse SIADH

Tetracyclines

Doxycycline

- Most commonly used member tetracycline family
- <u>Accumulates intracellularly</u>
- Covers many unusual/atypical bacteria
 - Most zoonoses
 - Chlamydia
- Used to treat acne vulgaris (also minocycline)
 - Covers propionibacterium acnes within follicles

Tigecycline ... !!

Tetracyclines

Tetracycline, doxycycline, demeclocycline, minocycline

- Absorption impaired by minerals and antacids
 - Calcium, magnesium (antacids), Iron, Dairy including milk
 - These substances are cations that chelate the drug >> Cannot be taken with antacids or milk

Adverse Effects

- GI distress (common)
 - Epigastric pain, nausea, vomiting and anorexia
- **Photosensitivity** >> Red rash or blisters in sun exposed areas

Tetracyclines Adverse Effects

• Discoloration of teeth

- Brown-yellow discoloration of teeth
- Children under the age of eight (does not occur in adults)

• Inhibition of bone growth in children

- Deposit in bones >> Chelate with calcium
- Contraindicated in pregnancy
 - Cross placenta >> Can accumulate in fetal bone and teeth

CLINDAMYCIN

Clindamycin

- 50S ribosome
 - Prevents translocation, Same as macrolides
- Covers some gram (+)
 - Staph, viridans strep, Strep pyogenes, and S. pneumoniae
- Covers many *anaerobes*
 - Clostridium perfringens
 - Mouth anaerobes: Fusobacterium, Prevotella, Peptostreptococcus
- Main use is to cover anaerobes "above the diaphragm"
 - Aspiration pneumonia, Lung abscesses, Oral infections (mouth anaerobes)
- Lots of resistance to clindamycin in B. fragilis >> Anaerobic infections "below the diaphragm" >> **Metronidazole**

Clindamycin Adverse Events

• Classic cause of C. difficile infection

• Up to 10% of patients >> Pseudomembranous colitis >> C. difficile overgrowth >> Massive, watery diarrhea

Antibiotic-associated diarrhea

 Milder than C. diff infection >> Changes in GI flora >> Less absorption of solutes → osmotic diarrhea >> Stops when drug discontinued

LINEZOLID

Linezolid

- Binds to 50S Ribosome
 - Blocks initiation

•Main use:

- Vancomycin-resistant enterococcus (VRE) >> Epidemics in hospitals, Usually
 occurs in patients with prior antibiotic treatment
- Weak monoamine oxidase (MAO) inhibitor
 - Can cause <u>serotonin syndrome</u> >> High risk when given with SSRIS >> Fever, confusion, agitation, hyperreflexia
- Can cause *Thrombocytopenia*!

Bacteriostatic vs. Bactericidal

Antibiotic Class	<u>Action</u>
Aminoglycosides	Bactericidal
Macrolides	Bacteriostatic
Tetracyclines	Bacteriostatic
Chloramphenicol	Bacteriostatic
Clindamycin	Bacteriostatic
Linezolid	Bacteriostatic (mostly)
Quinupristin/dalfopristin	Variable

Most protein synthesis inhibitors are bacteriostatic Only aminoglycosides are bactericidal Misread proteins travel to membrane and increase permeability

Source: Microbiol Rev. Sep 1987; 51(3): 341-350.

QUINOLONES

Circle Circle Configuration Marille Circle Circle Circle Configuration Circle C

- Alterations of DNA gyrase and topoisomerase IV
- Alteration in cell permeability
- Efflux of drug

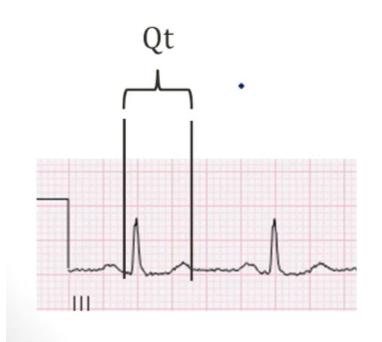
Ciprofloxacin, Levofloxacin, Moxifloxacin, Norfloxacin

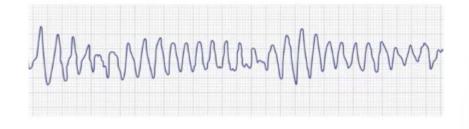
- Many gram (+), gram (-), atypicals
- Common clinical uses (*adults only*)
 - UTIS (E. Coli, other enteric gram negatives)
 - Pneumonia (S. pneumo, H. flu, atypicals)
 - Abdominal infections (enteric gram negatives)

Ciprofloxacin

- Some gram positive coverage
 - Rarely used alone for gram positive coverage (resistance)
- Very good gram negative coverage
 - Most reliable pseudomonas coverage
- Used in UTIS, GI infections
- Cipro ear drops for otitis externa (swimmer's ear ? P. aeruginosa)

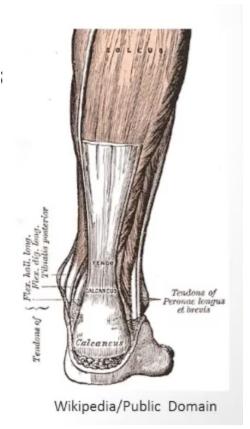
Levofloxacin


- More gram positive/atypical coverage than Cipro
 - Better strep pneumo coverage than Cipro
 - Covers most methicillin-susceptible Staph aureus
- Less effective against pseudomonas than Cipro
- Commonly used in pneumonia (strep, atypicals)


Moxifloxacin, Gatifloxacin, Sparfloxacin

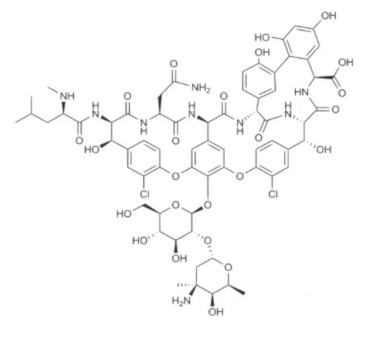
- <u>Better gram (+)/atypical coverage</u> than Levofloxacin
- Less effective for pseudomonas than Levofloxacin
- Also used in pneumonia

Quinolones Adverse Reactions


- Gastrointestinal upset
 - Anorexia, nausea, vomiting, and abdominal discomfort
 - Up to 17% of patients
- Neurologic side effects
 - Headache, dizziness
 - 2 to 6% of patients
- QT prolongation on EKG
 - Caused by blockade of K+ channels
 - Can lead to torsade de pointes

Quinolones Adverse Reactions

- Tendon rupture/tendonitis
 - Most commonly Achilles
 - More common older patients (>60), people on steroids
- Cannot use in *pregnancy/children*
 - Toxic to developing cartilage in animal studies
- <u>Antacids</u>
 - Disrupt absorption of many drugs, <u>Aluminum and magnesium</u> hydroxide, Sucralfate (contains aluminum)
- Key drugs that affected by this:
 - Tetracycline, *Fluoroquinolones*
 - Isoniazid, Iron supplements


VANCOMYCIN

Vancomycin

- Inhibits • Bind
 - Terminal amino acids change D-alanyl-D-alanine
- Same e to >> **D-alanyl-D-lactate**
 - Beta
 VRSA emerges
 - Vancomycin: block transpeptidase binding

Vancomycin

- Only effective in Gram + (huge!)
- <u>Two common uses</u>:
 - Methicillin resistant Staph Aureus (MRSA)
 - Oral therapy for C. difficile pseudomembranous colitis
- Often given empirically when MRSA is a concern
 - Endocarditis
 - Severe pneumonia/sepsis

Vancomycin Adverse Effects

- Generally well tolerated
- •Nephrotoxicity "check Trough level"
 - Less common with modern preparations
 - Increased risk if concomitant aminoglycoside therapy
- Ototoxicity >> Tinnitus, vertigo, and hearing loss reported (rare)
- Red man syndrome
 - Flushing, erythema, itching >> Usually affects upper body, neck, face more than lower body >> Occurs 10-20 minutes after start of infusion >> <u>Direct</u> <u>activation of mast cells</u> → histamine release "Pseudoallergic drug reaction"
 - May develop with first administration
 - <u>Infusion related</u> \rightarrow slow infusion = no symptoms

METRONIDAZOLE

Metronidazole

- *Prodrug:* Must be reduced to activate
- Only *anaerobic bacteria* capable of reduction
- Reduced metronidazole \rightarrow more drug uptake
- Activated form generates free radicals >> Interact with DNA >> DNA breakage/destabilization >> Cell death

Metronidazole Uses

- Good coverage of anaerobes "below the diaphragm"
 - Bacteroides fragilis
 - Clostridium difficile
- Peritonitis, abdominal abscesses, diverticulitis
- Often given *with quinolone* for anaerobic/GI gram(-)
 - Cipro/Flagyl often used for diverticulitis
- H. pylori (Triple therapy) and Gardnerella vaginalis
- Treatment of *bacterial vaginitis*
- Anaerobic protozoa (lack mitochondria)
 - Trichomonas vaginalis, Entamoeba histolytica, Giardia lamblia

Metronidazole Adverse Reactions

- Unpleasant *metallic taste*
- GI: Abdominal discomfort, nausea
- Neuro: Neuropathy, headache
- Disulfiram-like reaction >> Alcohol consumption with metronidazole >> <u>Warmth, flushing, sweating</u>. "Unclear mechanism"
- Metronidazole may not inhibit alcohol metabolism >> Patients should avoid alcohol

NITROFURANTOIN

Nitrofurantoin

- Rarely used antibiotic
 - Exact mechanism incompletely understood
- Bactericidal drug
- Only use is UTIs (concentrates in urine)
- Two things to know about this drug:
 - Used for UTIS in pregnancy (avoid TMP-SMX, quinolones)
 - Can trigger hemolysis in *G6PD patients*

