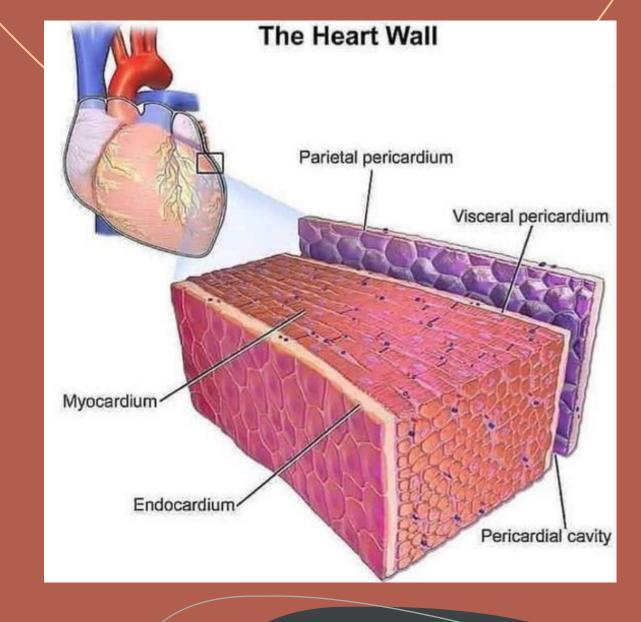


Topics:

1-Introduction

2-Acute pericarditis

3-Constrictive pericarditis


4-Pericardial effusion

5-cardiac tamponade

Pericardium

Surrounds or Covers the outside of the heart and the great vessels.

- (i) Outer Fibrous Layer
- (ii) Inner Serous Layer:
- VISCERAL LAYER OF SEROUS PERICARDIUM
- PARIETAL LAYER OF SEROUS PERICARDIUM
- PERICARDIAL CAVITY which contains the PERICARDIAL FLUID

o 15-50 mL of an ultrafiltrate of plasma

Inflammation of the pericardium that either occurs as an isolated process or with concurrent myocarditis (myopericarditis)

Etiology

Idiopathic

- Postviral
- Preceded by a recent flu-like illness or upper respiratory or GI symptoms

Infectious

- Viral (e.g., Coxsackievirus, echovirus, adenovirus, EBV, influenza, HIV, hepatitis A or B)
- Bacterial (tuberculosis, Staphylococcus spp., Streptococcus spp) fungal, toxoplasmosis

After MI

- Postinfarction fibrinous pericarditis: within 1–3 days as an immediate reaction
- Dressler syndrome: weeks to months after an acute myocardial infarction

Dressler syndrome:overlap or misdiagnosed for reinfarction that occurs 2 days post MI

Uremia

due to acute or chronic renal failure

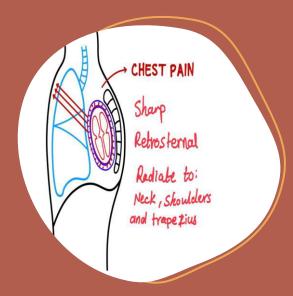
Collagen vascular diseases

 SLE, scleroderma, rheumatoid arthritis, sarcoidosis

Neoplasm

 especially Hodgkin lymphoma, breast, and lung cancer Hydralazain :antihypertensive save in pregnancy but it induces sleep like symptoms +Ana-antidsDNA

Drug-induced lupus syndrome


• (procainamide, hydralazine)

Radiation

- Exudative pericarditis: develops acutely during or after radiation therapy
- Constrictive pericarditis: develops several years after radiation therapy

Trauma

CLINICAL MANIFESTATIONS

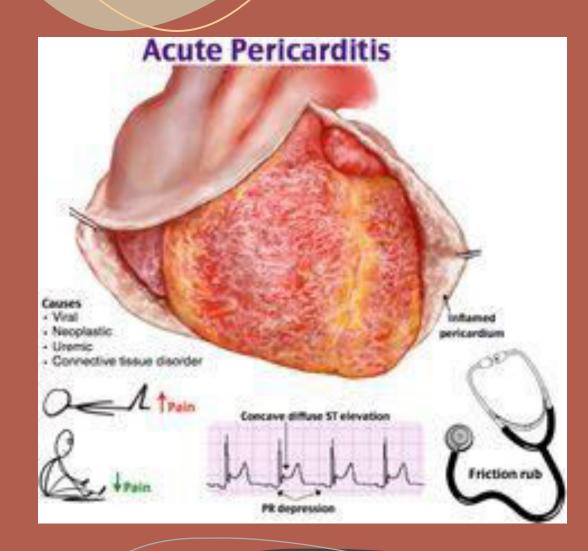
Acute, sharp retrosternal pain

Aggravated by coughing, swallowing, supine position or deep inspiration

Improves on sitting and leaning forward

Can radiate to the neck and shoulders

2- Low-grade intermittent fever


3-Nonproductive cough

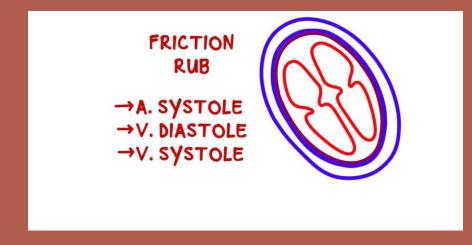
4-Dyspnea&Tachpnea

Criteria for diagnosis:

- 1. Characteristic chest pain
- 2. Pericardial friction rub
- 3.. Typical ECG changes
- 4. New or worsening pericardial effusion

On physical examination:

Pericardial friction rub

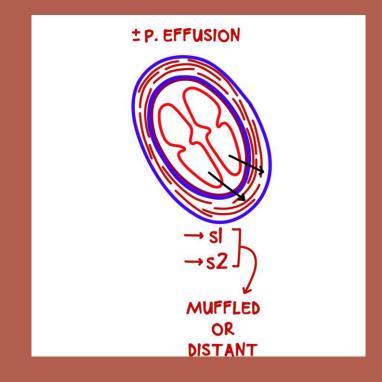

Caused by friction between visceral and parietal pericardial surfaces.

Scratching, high-pitched sound

Occur in:

- -Atrial systole (presystolic)
- -Ventricular systole (loudest and most frequently heard)
- -Early diastole

Best heard over the left sternal border at end of expiration with patient sitting up


On physical examination:

If there is Pericardial effusion

Faint heart sounds

those sounds travel through the fluid

The sound muffled, distant and generally decrease

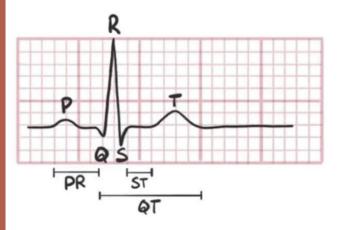
ECG shows four changes in sequence

Stage

• diffuse ST elevations, ST depression in aVR and V1, PR segment depression

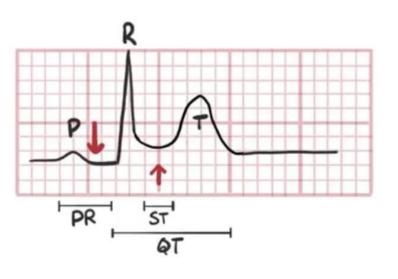
Stage :

ST segment normalizes in ~ 1 week


Stage 3

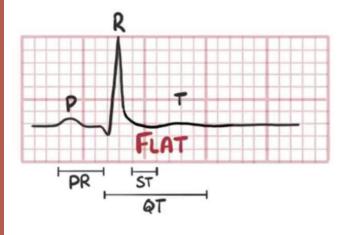
inverted T waves

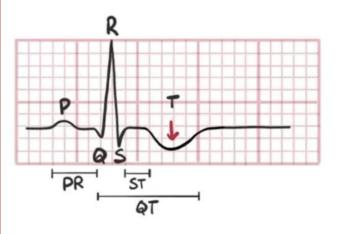
Stage 4


ECG returns to normal baseline (as prior to onset of pericarditis) after weeks to months

NORMAL ECG

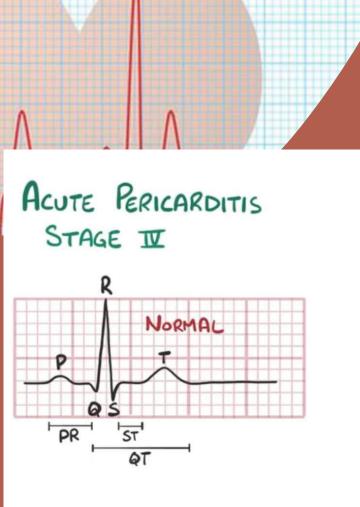
Note from doctor:
Precaredtist post MI
diffused st elevation and pr
depression
Reinfarction:
ST elevation at group and
PR depression in other
group



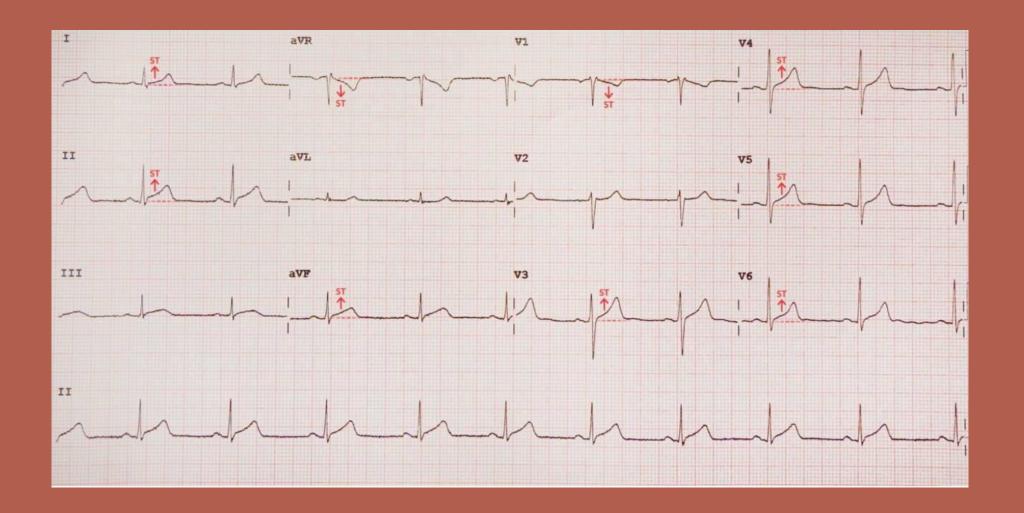

Diffuse ST elevation PR segment depression

One case of MI
happen diffuse ST
elevation =
massive MI left
main coronary
occlusion

ACUTE PERICARDITIS STAGE IL



ACUTE PERICARDITIS STAGE III



inverted T waves

ST segment normalizes in ~ 1 week

ECG returns to normal baseline

10/29/2023

To aid your diagnosis:

pericardial effusion may be present, often normal

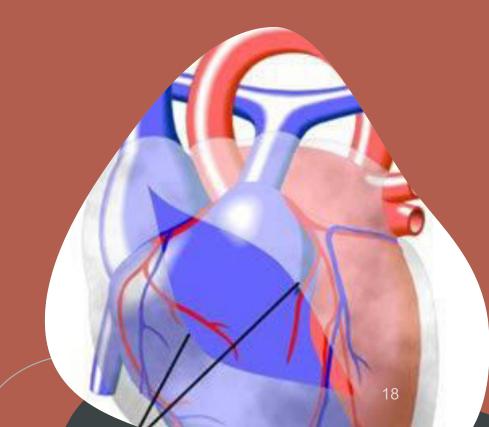
CT scan and MRI

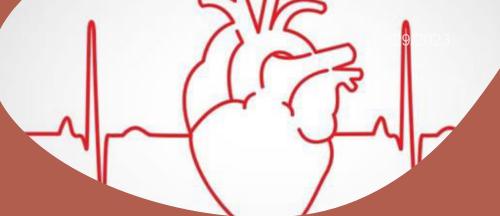
may also show pericardial thickening and calcifications, and can aid greatly in the diagnosis.

Lab findings:

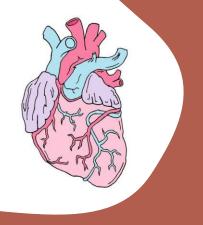
- ☐ CBC :leukocytosis
- ☐ ↑ Troponin I (could be minimally elevated).
- \□ ↑ ESR
- ↑ ↑ CRP
- │ ↑ Creatinine kinase (if associated myocarditis)

- 1. Most cases are **self-limited and resolve in 2 to 6 weeks**.
- 2. Treat the underlying cause if known.
- 3. First-line therapy is **high-dose NSAIDs** (aspirin, ibuprofen, naproxen, or indomethacin)
- . If it fail give Colchicine
- 1. <u>Glucocorticoids</u> may be tried if pain does not respond to NSAIDs, but should be avoided if at all possible, as they are associated with a high rate of recurrent pericarditis
- 2. Relatively uncomplicated cases can be treated as an outpatient. However, patients with more worrisome symptoms such as fever and leukocytosis and patients with worrisome features such as pericardial effusion should be hospitalized.


REFERENCE Step-Up


2-Constrictive pericarditis:

Is characterized by compromised cardiac function caused by a thickened, rigid, and fibrous pericardium



Pathophysiology

- A. fibrotic, rigid pericardium restricts the diastolic filling of the heart
- B. Ventricular filling is unimpeded during early diastole because intracardiac volume has not yet reached the limit defined by the stiff pericardium.
- C. When intracardiac volume reaches the limit set by the noncompliant pericardium, ventricular filling is halted abruptly.

Clinical Feature

- Jugular vein distention, ↑
 jugular venous pressure
- 2. Prominent x descents and y descents in jugular venous pressure
- 3. Kussmaul sign :a markedly raised JVP which rises paradoxically with inspiration
- 4. Hepatic vein congestion
- 5. Peripheral edema or anasarca , ascites

Symptoms of fluid overload

Normal jugular venous pressure

a
c
x
Time
Restrictive heart conditions
Constrictive pericarditis

Symptoms of reduced cardiac output

- 1. Fatigue, dyspnea on exertion
- 2. Tachycardia
- 3. Pericardial knock: sudden cessation of ventricular filling that is heard best at the left sternal border
- 4. Pulsus paradoxus:
 decreased blood pressure
 amplitude by at least 10 mm
 Hg during deep inspiration

Diagnosis:

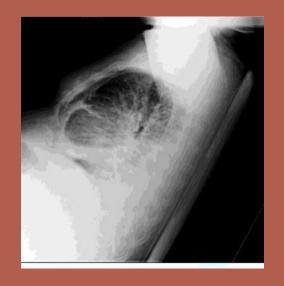
1. ECG

- **a. Nonspecific changes** such as low QRS voltages, generalized T-wave flattening or inversion, left atrial abnormalities.
- b. AFib is more often seen in advanced disease

2. Echocardiogram a. ↑ Pericardial thickness

3.CT scan and MRI

- a. Pericardial thickening > 2 mm
- b. Calcifications



Diagnosis:

4. Chest x-ray (PA and lateral views)

- a. Heart size: normal or slightly increased
- b. Pericardial calcifications

Treatment

- Treat the underlying condition.
- Diuretics may be extremely helpful in treating fluid overload symptoms
- Surgical pericardiectomy

3-pericardial effusion

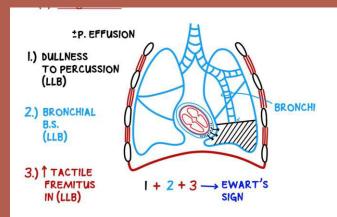
An accumulation of fluid in the pericardial space between the parietal and visceral pericardium.

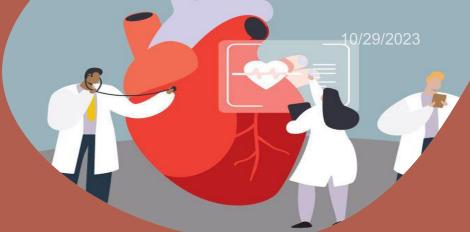
Normally 10-50 mL

May be acute < 3 months or chronic > 3 months.

Etiology:

Hemopericardium:


- May be due to post MI due to free ventricular wall and septal rapture , anyursem (e.g., complication of MI)
- Chest trauma
- Aortic dissection
- Cardiac surgery

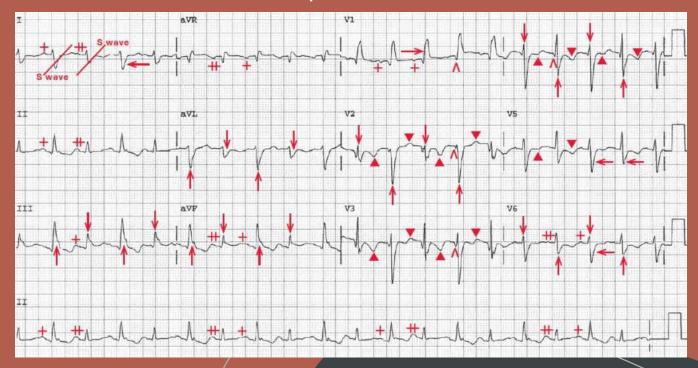

Serous pericardial effusion

- Idiopathic
- Acute pericarditis
- Malignancy
- Postpericardiotomy syndrome
- Uremia
- Autoimmune disorders
- Hypothyroidism
- Right heart failure

Clinical Features

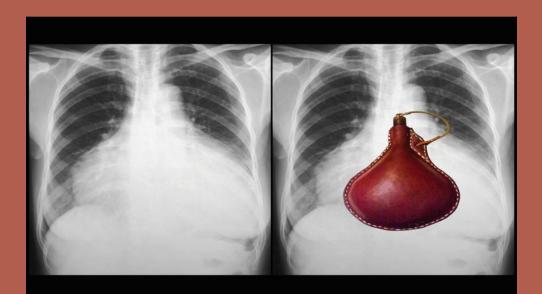
- 1. Initially asymptomatic in most cases
- 2. Constitutional symptoms FAHM
- 3. Shortness of breath, especially when lying down (orthopnea)
- 4. Chest pain may be typically as pericarditis, or it may be dull and heavy due to distension of the pericardium
- 5. Can cause compressive symptoms
- -Hoarseness
- -Nausea
- Dysphagia
- Hiccups
- cough

- 6. Apical impulse is difficult to locate or nonpalpable
- 7. Ewart sign: dullness to percussion at the base of the left lung &increased vocal fremitus and bronchial breathing due the compression of lung parenchyma by the pericardial effusion



Diagnosis

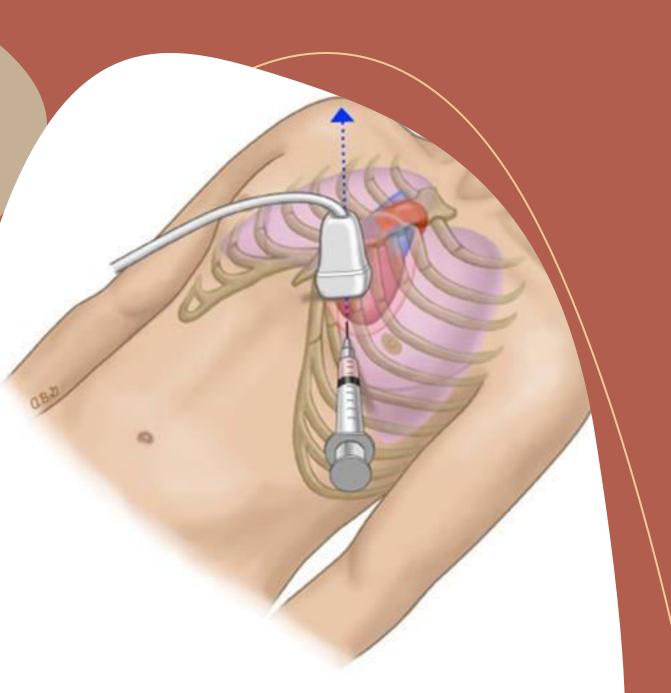
- 1. Echocardiogram
- a. Imaging procedure of choice:Confirms the presence or absence of a significant effusion
- b. Most sensitive and specific method of determining whether pericardial fluid is present; can show as little as 20 mL of fluid
- c. Should be performed in all patients with acute pericarditis to rule out an effusion


2.ECG

- a. Normal in smaller effusions
- b. May show low QRS voltages and T-wave flattening but should not be used to diagnose pericardial effusion
- c. **Electrical alternans**suggests a massive pericardial effusion and tamponade

3-CXR

- CXR shows enlargement of cardiac silhouette when >250 mL of fluid has accumulated
- Cardiac silhouette may have prototypical
 "water bottle" appearance



4-Pericardial fluid analysis

via diagnostic pericardiocentesis

Order protein and glucose content, cell count and differential, cytology, specific gravity, hematocrit, Gram stain, acid-fast stains, mycobacterial PCR, fungal smear, cultures, LDH content

It done To relive the symptoms and for diagnosis
If it's color as urine it will be Transudate
If it's color cloudy it will be Exudate

Treatment:

Small pericardial effusion:

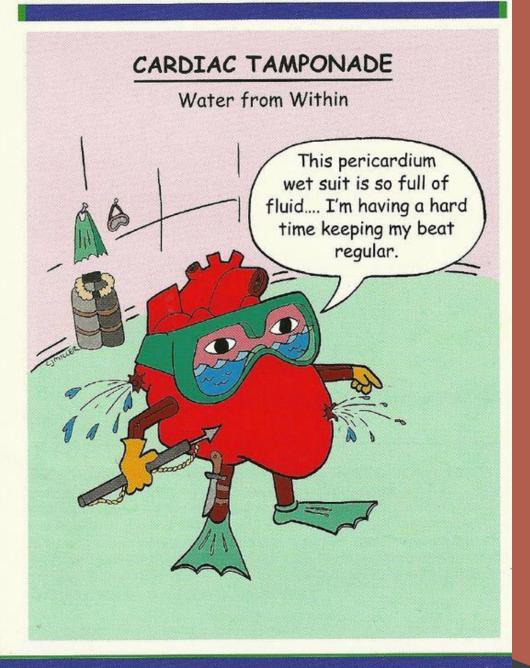
Conservative management focusing on treating the underlying cause is usually sufficient, repeat echocardiogram in 1 to 2 weeks is appropriate.

Large pericardial effusion

causing symptoms or of uncertain etiology: Consider pericardial fluid drainage

Provide supportive care, e.g., pain management

4-cardiac tamponade:

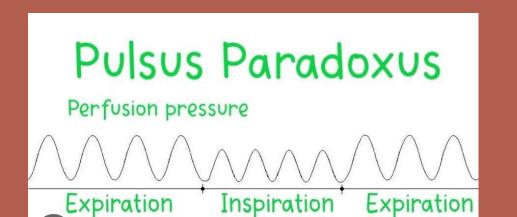

Defined as accumulation of pericardial fluid. It is the rate of fluid accumulation that is important, not the amount.

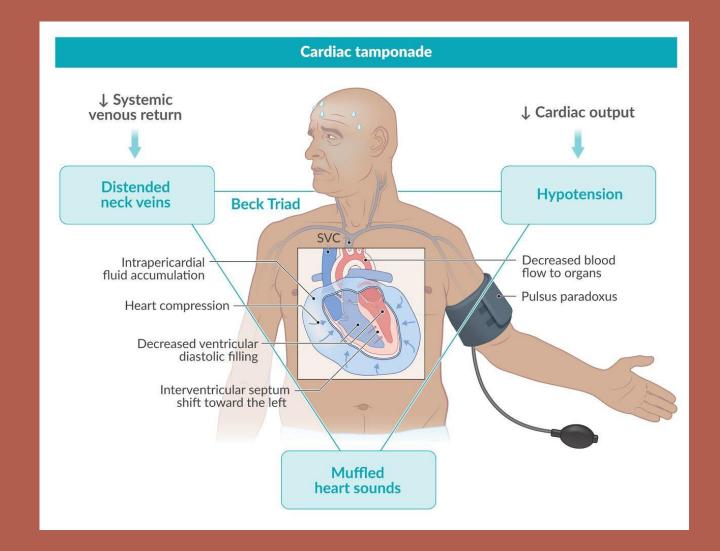
Note:

- a. Two hundred milliliters of fluid that develops rapidly (i.e., blood secondary to trauma) can cause cardiac tamponade.
- b. b. Two liters of fluid may accumulate slowly before cardiac tamponade occurs. When fluid accumulates slowly, the pericardium has the opportunity to stretch and adapt to the increased volume (i.e., related to a malignancy).

Causes

- Penetrating (less commonly blunt)
 trauma to the thorax, such as gunshot
 and stab wounds
- 2. latrogenic: Central-line placement, pacemaker insertion, pericardiocentesis, etc.
- 3. Pericarditis, progressive pericardial effusion
- 4. Post-MI with free wall rupture
- 5. Aortic dissection

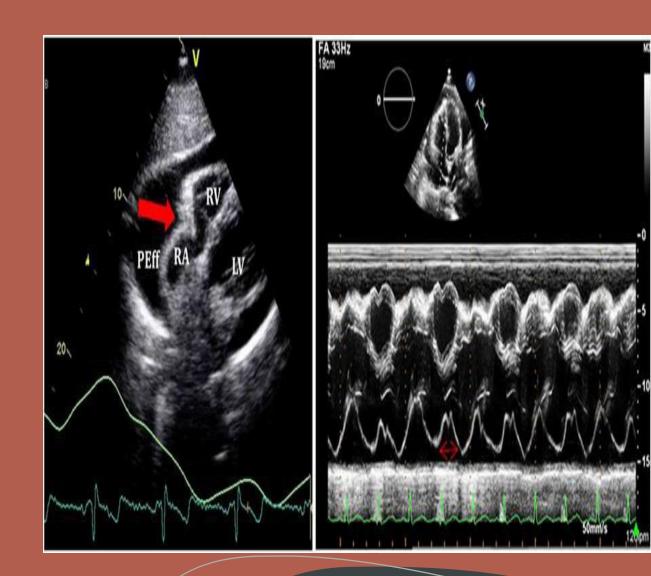

Pathophysiology


pericardial fluid collection (e.g., bloody or serous) $\rightarrow \uparrow$ pressure in the pericardial space \rightarrow compression of the heart (especially of the right ventricle due to its thinner wall) \rightarrow interventricular septum shift toward the left ventricle chamber $\rightarrow \downarrow$ systemic venous return (preload) $\rightarrow \downarrow$ ventricular diastolic filling $\rightarrow \downarrow$ stroke volume (and venous congestion) $\rightarrow \downarrow$ cardiac output and equal end-diastolic pressures in all 4 chamber

Sample Footer Text 32

Clinical features:

- 1. <u>Beck triad</u>: Hypotension, muffled heart sounds, elevated JVP
- 2. Pulsus paradoxus
- 3. Pallor, cold sweats
- 4. Left ventricular failure
- 5. Symptoms of right heart failure
- 6. Obstructive shock, cardiac arrest

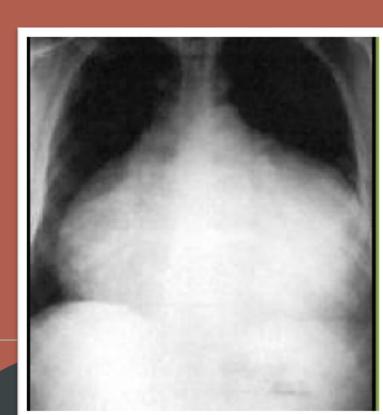


Diagnosis

1. Echocardiogram

- a. Chamber collapse
- ☐ Early signs: collapse of the right atrium during systole, collapse of the right ventricle during early diastole
- □Later: collapse of the left atrium
- b. Swinging motion of the heart
- 2.ECG: o Sinus tachycardia o Low voltage QRS complexes o Electrical alternans o Pulseless electrical activity (PEA) in cardiac arrest

Findings are neither 100% sensitive nor specific. ECG should not be used to


3. CXR

- a. Enlargement of cardiac silhouette when >250 mL has accumulated
- b. Clear lung fields

- a. Shows equalization of pressures in all chambers of the heart
- b. Shows elevated right atrial pressure with loss of the y descent

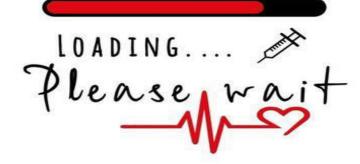
Treatment

Nonhemorrhagic tamponade

<u>a. If patient is hemodynamically stable</u>

Monitor closely with echocardiogram, CXR, ECG If patient has known renal failure, dialysis is more helpful than pericardiocentesis

b. If patient is not hemodynamically stable


Pericardiocentesis is indicated If no improvement is noted, fluid challenge may improve symptoms

Hemorrhagic tamponade secondary to trauma

- If the bleeding is unlikely to stop on its own, emergent surgery is indicated to repair the injury and it is contraindication of aspiration
- b. Pericardiocentesis is only a temporizing measure and is not definitive treatment.

Surgery should not be delayed to perform pericardiocentesis

DOCTOR IN PROGRESS

Thank Itous Itous

Refrancecses:
Step-Up to medicine
Ambosis

اللهم إنا نستودعك غزه وأهلها، اللهم أنصرهم وثبت اقدامهم، اللهم كن لهم ناصراً ومعينا،

