Parathyroid glands disorders

DR.AHMAD ALTARAWNEH

Calcium

Ca concentration is tightly regulated

Different forms of calcium

Most of the calcium in the body is stored in the bones as hydroxyapatite

Calcium in the serum:

45% - free ionised form ← physiologically active
45% - bound to proteins (predominantly albumins)
10% - complexed with anions (e.g. citrate, sulfate, phosphate)

Typically measured in routine blood tests

The total serum calcium concentration is adjusted to reflect any abnormality in albumin, the major calcium binding protein. The formula to use is: corrected calcium = measured total serum calcium in mg/dL + $0.8 \times (4.0 - \text{patient's serum albumin concentration in g/dl}).$

Normal laboratory values

Test	Specime n	Conventional Units	SI Units
Calcium	serum	8.5-10.3 mg/dL	2.12-2.57 mmol/L
Ionised calcium	plasma	4-5.2 mg/dL	1.0-1.3 mmol/L
Calcium	urine	M < 300 mg/d F < 250 mg/d	M < 7.5 mmol/d F < 6.2 mmol/d
Phosphoru s	serum	2.5-4.5 mg/dL	0.81-1.45 mmol/L
PTH (intact)	serum	11-67 pg/mL	

M-male, Ffemale

Causes of hypercalcemia

Parathyroid mediated

Primary hyperparathyroidism (sporadic)

Inherited variants

Multiple endocrine neoplasia (MEN) syndromes

Familial isolated hyperparathyroidism

Hyperparathyroidism-jaw tumor syndrome

Familial hypocalciuric hypercalcemia

Tertiary hyperparathyroidism (renal failure)

Non-parathyroid mediated

Hypercalcemia of malignancy

PTHrp

Increased calcitriol (activation of extrarenal 1 alpha-hydroxylase)

Osteolytic bone metastases and local cytokines

Vitamin D intoxication

Chronic granulomatous disorders

Increased calcitriol (activation of extrarenal 1-alpha-hydroxylase)

L	
Medications	
Thiazide diuretics	
Lithium	
Teriparatide	
Abaloparatide	
Excessive vitamin A	
Theophylline toxicity	
Miscellaneous	
Hyperthyroidism	
Acromegaly	
Pheochromocytoma	
Adrenal insufficiency	
Immobilization	
Parenteral nutrition	
Milk-alkali syndrome	

The parathyroid glands are two pairs of glands usually positioned behind the left and right lobes of the thyroid. Each gland is a yellowish-brown flat ovoid that , usually about 6 mm long and 3 to 4 mm wide, and 1 to 2 mm anteroposteriorly. There are typically four parathyroid glands

Anatomy of the Thyroid and Parathyroid Glands

Major mediators of calcium and phosphate balance

Ser	um	Pparathormone (PTH)	
Ca	Ρ		
S	[°] S		
		 increases the release of calcium and phosphate from bones stimulates the formation of active vitamin D in the kidneys (activation of 1 α hydroxylase) reduces calciuria and increases phosphaturia 	
Vitamin D			
		• increases the uptake of Ca and P in the gastrointestinal tract	
		Calcitonin (low physiological importance)	
		 decreases the uptake of Ca in the gastrointestinal tract increases calciuria reduces bone resorption 	
		FGF 23(Fibroblast Growth Factor 23)	
		increases phosphaturia	

The effect of parathyroid hormone

Synthesis and regulation of active vitamin D (calcitriol)

Hyperparathyroidism

Primary - PTH secretion is disproportionately high in relation to the serum calcium concentration.

Secondary to kidney failure, severe vitamin D and calcium deficiency. Reversible, after removing the cause of the disorder.

Tertiary - is excessive autonomous secretion of parathyroid hormone after a long period of secondary hyperparathyroidism.

TABLE 3 Lab Comparison

Hyperparathyroidism	Calcium	PTH	Vitamin D	Phosphate
Primary	\uparrow	$\uparrow \rightarrow$	\uparrow	\checkmark
Secondary	\downarrow \rightarrow	\uparrow	\checkmark	1 or √
Tertiary	\uparrow	$\uparrow\uparrow$	\checkmark	\uparrow

Key: \uparrow Elevated, \downarrow decreased, \rightarrow normal.

Source: Brashers. Pathophysiology. 2015.6

Primary hyperparathyroidism (PHPT (

Primary hyperparathyroidism is characterised by secretion of PTH that is excessively disproportionate to serum calcium levels, resulting from a primary defect of parathyroid cells.

PHPT results from:

- one or more adenomas
- hyperplasia of all parathyroid glands

80-85% 10-15% fewer than 1%

• parathyroid carcinoma

PHPT - familial hereditary syndromes

Hereditary forms of PHPT account for 5% of cases:

- Multiple endocrine neoplasia (MEN(1,2A
- Familial non-MEN hyperparathyroidism
- Hereditary hyperparathyroidism jaw tumor syndrome

Primary hyperparathyroidism – clinical forms

- The most common clinical presentation of PHPT is asymptomatic or low symptomatic disease
- Atypical occurences include normocalcemic PHPT and parathyroid crisis.

Classical clinical consequences of

Bone destruction	Hypercalcemia	Hypercalciuri a
Osteopenia	Peptic ulcer disease	Urolithiasis
Osteoporosis	Pancreatitis	Nephrocalcinosis
Bone deformities and fractures	Constipation, nausea, vomiting or loss of appetite	Nephrogenic diabetes insipidus
Osteitis fibrosa cystica, brown tumors	Polydipsia and polyuria Bone pain , myalagia	
	Renal failure	
	Cardiovascular features: hypertension, arrhythmia, ventricular hypertrophy, and vascular and valvular calcification	
	Tiring easily or weakness	

Normocalcemic primary hyperparathyroidism (a variant of PHPT(

• **†P**TH

- Normal serum total and ionized calcium concentration
- The features of PHPT may be present (e.g. low BMD)
- All secondary causes for hyperparathyroidism must be ruled out

Normocalcemic PHPT is considered to be an early form of asymptomatic PHPT or represent a unique phenotype of the disease.

Diagnostic approach to hypercalcemia in adults

Diagnosis of primary hyperparathyroidism

additional evaluation to determine management

Bone densitometry (DXA(lumbar spine Hip total or femoral necK radius (distal 1/3 site(
Ultrasound abdominal examination	renal imaging

Primary hyperparathyroidism bone mineral density (DXA(

	T- score
Femoral neck	-1.41
Lumbar spine	-2.23
Forearm (1/3 distal)	-3.26

Primary hyperparathyroidism – bone destruction

Brown tumor of the skull of a young woman (CT)

Familial Hypocalciuric Hypercalcemia (FHH(

The reason of FHH is inactivating mutation of the calcium sensing receptor in parathyroid glands.

↑Serum calcium and ↑ N PTH

but

• Urine calcium is low less than 100 mg/24H

FHH is a rare, lifelong, benign condition.

Calculation of calcium/creatinine excretion ratio

- CaE = [Urine Ca (mmol)/urine Cr (mmol)]
- × [(plasma Cr (micromol)/1000)/plasma Ca (mmol)]
- = <0.01 in FHH
- =>0.02 in PHPT

These numeric parameters are not fully sensitive or specific and genetic

Common causes of secondary hyperparathyroidism

Disorder	Comment
Chronic kidney disease (CKD) GFR below 60 ml/min)	Impaired 1,25(OH)2D production, hyperphosphatemia
Decreased calcium intake	
Calcium malabsorption	Vitamin D deficiency, celiac disease, chronic pancreatitis, post gastrectomy syndrome, bariatric surgery
Renal calcium loos	Renal hypercalciuria
Drugs	Bisphosphonates (inhibiton of bone resorption), anticonvulsants, furosemide, phosphorus

Primary hyperparathyroidism - differential diagnostics

	PHPT	FHH (Familial	Secondary hyperparathyroidism		Malignanc y
	hyperpara- thyroidism)	Hypocalciuric Hypercalcemi a)	Chronic renal failure	Malabsorption, Ca & Vit.D deficiency	
РТН	N ↑	N ↑	$\uparrow \uparrow \uparrow$	↑, N	\downarrow
Cas	$\uparrow\uparrow$	\uparrow	↓, N	↓, N	1
Ca _{u24h}	$\uparrow\uparrow$	\downarrow	\downarrow	\downarrow	$\uparrow \uparrow$
Phosphate s	\downarrow	Ν	1	↓, N	↓, N
BMD (DXA)	$\downarrow \downarrow$	Ν	\downarrow	\downarrow	↓, N

Primary hyperparathyroidism - treatment

- 1. Selective parathyroidectomy
- The treatment of choice for symptomatic disease is surgical removal of the hyperactive parathyroid glands.
- Surgery may be also recommended in some asymptomatic or low symptomatic patients.
- Parathyroidectomy (PTX) should only be performed by highly experienced surgeons.

2. Pharmacotheraphy

In many people, the disease may remain mild or asymptomatic for a long period. In these patients, as well as in those after an unsuccessful PTX, who are unwilling to undergo or considered unsuitable for surgery it attempts to apply a symptomatic pharmacotherapy.

So far treatment with calcimimetics or bisphosphonates seems to be the most promising.

Primary hyperparathyroidism - indications for surgery in asymptomatic PHPT

Measurement	Surgery Recommended a
Serum Calcium	> 1.0 mg/dl (0.25 mmol/L) above normal
	A. Bone Mineral Density by DXA T score < 2.5 SD at humber spins, hip (total or femoral neals) or radius
Skeletal	(distal 1/3 site)b or presence of fragility fracture
	B. Vertebral fracture by X-ray, CT, MRI or VFA
	A. Creatinine clearance < 60 ml/min
Renal	B. 24h urine for calcium > 400 mg/d (>10 mmol/d) and increased stone risk by biochemical stone risk analysis
	C. Presence of nephrolithasis or nephrocalcinosis by X-ray, US, or CT
Age	< 50 years
a Surgery is also indicate	ed in natients for whom medical surveillance is neither desired nor possible

b the use of Z-scores instead of T scores is recommended in evaluating BMD in premenopausal women and men younger than 50 y

Localisation studies

Localisation studies should not be used to establish the diagnosis of PHPT or to determine management.

They should be done after a decision for surgery has been made.

PHPT - localisation tests

The type of imaging	Comments	Sensitivity *
Ultrasonography	Usually a hypoechoic parathyroid adenoma posterior to the thyroid parenchyma with peripheral vascularity seen on colour Doppler. US provides additional anatomic information about the thyroid gland.	up to 80%
Technetium-99m sestamibi scintigraphy	Planar image	60-90%
SPECT — Sestamibi-single photon emission computed tomography	Is a three-dimensional sestamibi scan. The multidimensional images illustrate the depth of the parathyroid gland or glands in relation to the thyroid.	~ 90%
SPECT-CT	SPECT and CT fusion. Adds the ability to discriminate parathyroid adenomas from other anatomic landmarks.	

Parathyroid scintigraphy (99mTc+MIBI and 99mTc)

"The most important preoperative localisation challenge in PHPT is to locate the parathyroid surgeon!"

> John Doppman, 1975

PHPT - postoperative hypocalcemia

Hypocalcemia	The cause of hypocalcemia
Transient and mild	suppression of the remaining normal parathyroid tissue
Prolonged and accompanied by hypo- or euphosphatemia and high PTH levels)hungry bone syndrome(rapid deposition of serum calcium into demineralised bone
Accompanied by hyperphosphatemia and low PTH levels	hypoparathyroidism

Medical Management of Primary Hyperparathyroidism

Pharmacotherapy may be used in mild or asymptomatic PHPT and in in patients after an unsuccessful parathyroidectomy (PTX), or in those who are unwilling to undergo or considered unsuitable for surgery.

Pharmacological treatment should be reserved for those patients in whom it is desirable to lower the serum calcium or increase BMD.

Medical Management of Primary Hyperparathyroidism

Medicine	Effect			
Calcimimetics	Decrease calcemia and calciuria			
(cinacalcet)	• Reduce, but not normalise PTH			
	• Do not affect BMD			
Bisphosphonates	Improve BMD			
(alendronate)	• Do not alter serum calcium			
Denosumab (?)	• RANKL antagonist - decrases bone			
	resorption			

Patients with low serum 25-hydroxyvitamin D should be repeatedely administered with doses of vitamin D that bring its serum levels to 20 ng/ml at a minimum (with caution, so as not to aggravate hypercalcemia). Treatment of severe hypercalcemia (parathyroid crisis(

- Hydration with normal saline
- Bisphosphonates iv. (pamidronate, zoledronic acid)
- Calcitonin sc., im.

Hypoparathyroidism

Hypoparathyroidism is the state of decreased secretion or activity of parathyroid hormone (PTH).

This leads to decreased blood levels of calcium (hypocalcemia) and increased levels of blood phosphorus (hyperphosphatemia).

differential diagnosis(Hypocalcemia (etiologies by mechanism

Hypoparathyroidism	Vitamin D deficiency	Low dietary intake of Ca +2	Miscellaneou s mechanisms
PTH ↓, N	PTH ↑		
Thyroidectomy or other neck surgery	Low calcitriol:•↓ intake of dietaryVit. D•Inadequate sunlightexposure•Malabsorptionsyndrome↓ conversion of 25OHD to1,25(OH)2D•Renal failure•Hyperphosphatemia•Vitamin D dependentrickets, type 1		Osteoblastic bone metastases
I 131 therapy for G-B disease or thyroid cancer			Pancreatitis
Autoimmune hypoparathyroidism			Hungry bones syndrome
Infiltration of parathyroids			Hyperphosphatemia
Hypomagnesemia			Martin La
Congenital /genetic	Calcitriol resistance Vitamin D resistant rickets		transfusions
			Acute respiratory

Causes of deficient PTH secretion or activity in hypoparathyroid disease states

- 1. Acquired deficiency of parathyroid hormone secretion (> 99% of all cases):
- Surgical removal of the parathyroid glands (usually unintentionally)
- Radiation therapy to the neck, infiltration of parathyroids
- Hypomagnesemia
- Calcimimetics
- <u>Autoimmune</u>:
 - isolated hypoparathyroidism
 - APS 1 (autoimmune polyendocrine syndrome caused by mutations of the autoimmune regulator (AIRE) gene) → antibodies anty CaSR
- 1. **Resistance to parathyroid hormone** (pseudo-hypoparathyroidism), (extremely rare). Inability of the kidneys and bones to respond to the PTH being produced by normal parathyroids.

Diagnostics of hypoparathyroidism

- \downarrow calcium levels
- ↑ phosphorus levels
- **PTH levels** (but normal or elevated in pseudohypoparathyroidism)
- $\leftrightarrow ALP$

1.

- ↔ magnesium
- \leftrightarrow creatinine
- ↓ 1,25(OH)2D
- 2. 24 urine low calcium excretion
- 3. **ECG**: prolonged QT interval

Table 6.6 Investigation of hypocalcaemia

	ALP	PO ₄	PTH	Vitamin D	U&E	Mg
Vitamin D deficiency	1	Ļ	1	Ļ	N	N
Hypoparathyroidism	N	1	L	N	N	N/↓
Pseudohypoparathyroidism	N	1	^	N	N	N
PPI-induced hypomagnesaemia/hypocalcaemia	N	N	N	N	N	↓↓

pseudo-hypoparathyroidism

Hypoparathyroidism – symptoms

The major clinical manifestations of hypoparathyroidism are referable to hypocalcemia and are related to the severity and chronicity of the hypocalcemia.

Subjects who develop severe hypoparathyroidism quickly (for example, after neck surgery) can feel tired, irritable, anxious or depressed and demonstrate spontaneous or latent tetany.

Clinical features

 \uparrow neuromuscular excitability. In order of \uparrow severity, these include:

Tingling—especially of fingers, toes, or lips.

Numbness—especially of fingers, toes, or lips.

Cramps.

Carpopedal spasm.

Stridor due to laryngospasm.

Seizures.

The symptoms of hypocalcaemia tend to reflect the severity and rapidity of onset of the metabolic abnormality.

ECG : LONG QT

Signs

Chvostek's sign is elicited by tapping the facial nerve in front of the ear. A +ve result is indicated by twitching of the corner of the mouth. Slight twitching is seen in up to 15% of normal \mathcal{Q} , but more major involvement of the facial muscles is indicative of hypocalcaemia or hypomagnesaemia.

Trousseau's sign is produced by occlusion of the blood supply to the arm by inflation of a sphygmomanometer cuff above the arterial pressure for 3min. If +ve, there is carpopedal spasm, which may be accompanied by painful paraesthesiae.

The methods of treatment of hypoparathyroidism:

- Calcium carbonate 1-4 g/d orally, during and between meals
- Activated vitamin D analogues e.g. alfacalcidolum 1-3 μ g/d
- Vitamin D supplementation 400–800 IU/d to patients treated with activated vitamin D analogues
- Magnesium supplementation in case of deficiency
- Treatment of acute severe hypocalcaemia Iv calcium

CASE 1

46 yrs old female pt, present to the clinic as she incidently found that she has high serum calcium 11.6 mg/dl (8.5-10.5) she reports no symptoms What is your approach to this pt ??

Albumin 4.2 g/dl Pth 55 pg/ml (10-65), kft nl, vitamin d3 nl Deffrential ???? Manegemnt ???

CASE 2

A 68-year-old female with a background of stage four chronic kidney disease (CKD) presents with the following blood results to the nephrology clinic. She has had progressive CKD over many years PTH 19.1 pmol/l (1.05 - 6.83)

Adjusted calcium 2.84 mmol/l (2.1-2.6)

What endocrine abnormality is she most likely to have given her background?

Tertiary hyperparathyroidism Secondary hyperparathyroidism Multiple endocrine neoplasia 1 (MEN1) Pseudohypoparathyroidism Primary hyperparathyroidism

CASE 3

37 yrs old m pt, known to have crohns dx, he underwent ileo-cecal resection one month ago He presents to ER complaining of numbress, perioral parasthesia, muscle twitching Labs show hypocalcemia ca 6.5 pth 20 He was given multiple calcium infusions, which fail to releive sx and to raise calcium to desired level

What is your explanation

Case 4

A 60-year-old man who is known to have lung cancer comes for review. For the past three weeks he has lost his appetite, has been feeling sick and generally feels tired. On examination he appears to be mildly dehydrated. You order some blood tests: Calcium 11.5 mg/dl Albumin 40 g/l Glucose (random) 6.7 mmol/l Creatinine 115 µmol/l Which one of his existing medications is most likely to be contributing to his presentation? Amlodipine Simvastatin Bendroflumethiazide Aspirin Lisinopril