General Microbiology
Diagnosis of Viral Infections
2021-2022

Dr. Mohammad Odaibat
Department of Microbiology and Pathology
Faculty of Medicine, Mutah University
1. Clinical signs.

2. Virus detection:
 a) Direct examinations.
 b) Indirect examinations.
Diagnostics of viral diseases

Virus detection

1. Direct examination:

<table>
<thead>
<tr>
<th>Antigen detection</th>
<th>serology (immunofluorescence, ELISA etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron microscopy</td>
<td>morphology of virus particles</td>
</tr>
</tbody>
</table>
| Viral genome detection | - hybridization with specific nucleic acid probes
 | - polymerase chain reaction (PCR) |
Diagnostics of viral diseases

Virus detection

2. Indirect examination:

<table>
<thead>
<tr>
<th>Method</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Culture</td>
<td>cytopathic effect (CPE)</td>
</tr>
<tr>
<td></td>
<td>hemadsorption</td>
</tr>
<tr>
<td>Serology</td>
<td>Direct and indirect ELISA</td>
</tr>
<tr>
<td></td>
<td>Hemagglutination inhibition test</td>
</tr>
<tr>
<td>Animals</td>
<td>disease or death</td>
</tr>
</tbody>
</table>
Diagnostics of viral diseases

Direct methods

Serology
- Most used lab method
- Detection of antigen

<table>
<thead>
<tr>
<th>Classical Techniques</th>
<th>Newer Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Complement fixation tests (CFT)</td>
<td>1. Radioimmunoassay (RIA).</td>
</tr>
<tr>
<td>2. Immunofluorescence techniques (IF)</td>
<td>2. Sandwich Enzyme linked immunosorbent assay (ELISA).</td>
</tr>
<tr>
<td></td>
<td>4. Western Blot (WB).</td>
</tr>
</tbody>
</table>
Immunofluorescence techniques (IF)

Indirect immunofluorescence

1. Target protein
2. Primary antibody
3. Secondary antibody-fluorophore-labeled
4. Microscopy
Diagnostics of viral diseases

Direct methods

Serology

Enzyme Linked Immunosorbent Assay (ELISA).

Sandwich ELISA

1. Monoclonal antibody-coated well
2. Antigen binds to antibody
3. A second monoclonal antibody, linked to enzyme, binds to immobilized antigen
4. Substrate is added and converted by enzyme into colored product; the rate of color formation is proportional to the amount of antigen
Complement fixation test

Procedure

Looking for antigens

Patient serum

Ab, complement, and sRBCs are externally added

No hemolysis

Positive results

Patient serum

No antigen

Ab, complement, and sRBCs are externally added

HEMOLYSIS

Negative results
Complement fixation test

- **Ag**
- **No Ag**

Patient’s serum

- No hemolysis
- Hemolysis
Diagnostics of viral diseases

Direct methods

Electron Microscopy

• 10^6 virus particles per ml required for visualization.
• 50,000 - 60,000 magnification normally used.
• Viruses may be detected in the following specimens.
 • Faeces: Rotavirus, Adenovirus, Norwalk like viruses, Astrovirus, Calicivirus
 • Vesicle Fluid: HSV, VZV
 • Skin scrapings: papillomavirus, molluscum contagiosum
Diagnostics of viral diseases

Direct methods

Electron Microscopy

Problems with Electron Microscopy

• Expensive equipment
• Expensive maintenance
• Require experienced observer

Cylindrical (Mumps virus)

Icosahedral (poliovirus)
Diagnostics of viral diseases

Direct methods

Molecular Methods
• Methods based on the detection of viral genome.
• By Polymerase Chain Reaction (PCR)
• However in practice, although the use of these methods is indeed increasing, the role played by molecular methods in a routine diagnostic virus laboratory is still small compared to conventional methods.

Advantages of PCR:
• Extremely high sensitivity, may detect down to one viral genome per sample volume.
• Easy to set up.
• Fast turnaround time

Disadvantages of PCR
– Extremely liable to contamination.
– High degree of operator skill required.
– Not easy to set up a quantitative assay.
Diagnostics of viral diseases

Virus detection

2. Indirect examination:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Culture</td>
<td>cytopathic effect (CPE)</td>
</tr>
<tr>
<td></td>
<td>hemadsorption</td>
</tr>
<tr>
<td>Serology</td>
<td>Direct and indirect ELISA</td>
</tr>
<tr>
<td></td>
<td>Hemagglutination inhibition test</td>
</tr>
<tr>
<td>Animals</td>
<td>disease or death</td>
</tr>
</tbody>
</table>
Diagnostics of viral diseases

Indirect methods

Cell Culture

Are used for virus isolation. However, they are very expensive and it is often difficult to obtain a reliable supply.

Problems with cell culture

• Long period (up to 4 weeks) required for result.
• Often very poor sensitivity, sensitivity depends on a large extent on the condition of the specimen.
• Susceptible to bacterial contamination.
• Susceptible to toxic substances which may be present in the specimen.
Hemadsorption

- To detect the presence of certain viruses, the hemadsorption test is commonly used.
- Influenza and parainfluenza viruses express a viral hemagglutinin on the surface of infected cells.
- By the hemadsorption test, the culture medium is removed and replaced with a 0.5% dilute solution of guinea-pig red blood cells.

Hemadsorption inhibition

Patient serum with suspected Influenza infection + Cultured cells + Red Blood Cells

= No hemadsorption = Positive infection

Adsorbed RBCs on the culture cell
Diagnostics of viral diseases

Indirect methods
Serology
Detection of antibodies against the virus.

Criteria for diagnosing primary infection
• 4 fold or more increase in titer of IgG or total antibody between acute and convalescent sera
• Presence of IgM
• Seroconversion

Criteria for diagnosing reinfection
• fold or more increase in titer of IgG or total antibody between acute and convalescent sera
• Absence or slight increase in IgM
Note that during reinfection, IgM may be absent or present at a low level transiently.
Diagnostics of viral diseases

Indirect methods

Serology

Direct ELISA

Indirect ELISA

Antigen (Ag) coated well

Add enzyme (E) – conjugated antibody (Ab) to be measured

Add substrate (S) and measure color

Antigen-coated well

Add specific antibody to be measured

Add enzyme-conjugated secondary antibody

Add substrate (S) and measure color
Haemagglutination inhibition test

Red blood cells + Measles viruses + No Antiviral measles antibody from serum -> Hemagglutination
Haemagglutination inhibition test

Red blood cells + Measles viruses + Antiviral measles antibody from serum → Measles viruses neutralized and hemagglutination inhibited

Image showing a plate with red blood cells and a test tube with a positive result.
Indirect methods
Serology

Problems with Serology:
• Long period of time required for diagnosis for paired acute and convalescent sera.
• Mild local infections such may not produce a detectable Abs.
• Immunocompromised patients often give a reduced or absent Abs.
• Patients with infectious mononucleosis and those with connective tissue diseases such as SLE may react non-specifically giving a false positive result.
• Patients given blood or blood products may give a false positive result due to the transfer of antibody