

General Microbiology Lab

Bacterial Staining Lab 3

Dr. Mohammad Odaibat
Department of Microbiology and Pathology
Faculty of Medicine, Mutah University

Objectives

- The history of Gram staining.
- The structure of the bacterial cell wall.
- The difference between Gram positive and Gram negative.
- To study the importance of Gram staining.
- To study the procedure of Gram staining.
- To study the procedure of acid fast staining.

Importance of Gram Stain

- Characterization and classification of bacteria based on staining characteristics.
- The most widely used staining procedure in microbiology is the Gram stain,
- Important step in the screening of infectious agents in clinical specimens.
- Important in the empirical therapy.
- Advantages:
 - Easy to perform.
 - Widely available.
 - Yields quick and timely results.
 - Cheap.

Laboratory methods of diagnosing bacterial infections

Principle

Why should be stain bacteria?

Bacteria have nearly the same refractive index as water, therefore, when they are observed under a microscope they are opaque or nearly invisible to the naked eye. Different types of staining methods are used make cells visible under light microscope.

Source of samples for staining

- 1.Direct body samples (Blood, CSF, synovial fluid, swabs, ...etc).
- 2.From cultured bacteria (Broth, agar).

History of Gram Staining

Danish scientist Hans Christian Gram (1853–1938)

German pathologist Carl Weigert (1845- 1904)

S. pneumoniae

K. pneumoniae

K. pneumoniae

Gram positive vs. Gram negative bacteria

(b) Gram-negative: crystal violet is easily rinsed away, revealing red dye.

Lipopolysaccharide

Outer

Plasma membrane

Cell wall

Outer

layer

membrane

Peptidoglycan

membrane

Periplasmic

Peptidoglycan

Protein

Protein

Types of Staining Procedures

• Simple Staining (shapes and arrangements).

• Differential Staining (Example, Gram staining).

• Special Staining (Capsule, flagella, spores).

Requirements – Staining Reagents

- 1. Crystal violet Primary stain.
- 2. Gram's iodine- mordant/fixative.
- 3. Acetone (95%)- decoloriser.
- 4. Safranine-counterstain.

1. Smear preparation:

- A. Putting of bacterial suspension (bacteria in liquid) on the central portion of slide in a circular fashion,
- B. Air-dried.
- C. Heat-fixed.
- The resultant preparation called bacterial smear- appears dull white.

Procedure

- 1. Crystal violet 1 min wash: all bacteria take crystal violet- so all appears violet.
- 2. Iodine 1 min wash: Crystal Violet-iodine (CV-I) complex is formed.
- **3. Acetone**: add drop by drop and watch out colourcomes out wash immediately.
 - Acetone- bacteria with high lipid content loose CV-I complex(appear colouless)
 but bacteria with less lipid content retains CV-I complex (appear violet).
- 4. Safarnine— 1 min- wash: only colouless bacteria takes appear pink.
- Allow to dry examine under microscope.

Note: Results should be confirmed only with 100x.

Gram
Staining
Technique

Come	In	And	Stain
R	0	L	A
Y	D	С	F
Y S	I	Н	R
T	Ν	0	A
A	Е	L	N
l			1
			N
			E

Results of Gram staining

Results of Gram staining

Gram positive bacilli

Gram positive cocci

Gram negative cocci

Gram negative bacilli

Gram-positive Cocci in chains

Acid fast staining

Acid fast staining (AFS)

Importance

• AFS is a differential stain used to identify acid-fast organisms such as members of the genus *Mycobacterium*.

Principle:

- Acid-fast organisms are characterized by wax-like, nearly impermeable cell walls; they contain mycolic acid, waxes, and complex lipids.
- Because the cell wall is so resistant to most compounds, acid-fast organisms require a special staining technique

Mycobacterium tuberculosis structure

Mycolic acids & waxes

Peptidoglycan

Plasma membran

Acid fast staining (AFS)

Procedure

Application of heat (mordant)

Application of Acid Alcohol (decolorizer)

Application of Methylene Blue (counter stain)

Results of acid fast staining

Report: AFB Smear Positive or AFB Smear Negative

AFB Smear Positive