
Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions

Types of Alkyl halides:

1. primary

$$R-CH_2-X$$

2. secondary

3. tertiary

$$H_3C$$
 H_3C
 Br
3. tertiary

Reactions of Alkylhalides

1- Nucleophilic Substitution

Elements of nucleophilic substitution reactions

A- Nucleophile

B- Substrate

C- Leaving group

Name	Formula	Name	Comments
iles			
hydroxide	R—ÖH	alcohol	
alkoxide	R—OR	ether	
water	R-OH	alkyloxonium ion	These ions of ROH of ROR of R
alcohol	$R - O \cap H$	dialkyloxonium ion	products are alcohols and —H+ ROR ethers. (ether)
carboxylate	∥ R—OC—R	ester	
nhiles			
ammonia	$R-NH_3$	alkylammonium ion	With a base, $\xrightarrow{-H^+}$ RNH ₂
primary amine	R—NH₂R	dialkylammonium ion	With a base, $\xrightarrow{-H^+}$ RNH ₂ these ions readily lose $\xrightarrow{-H^+}$ R ₂ NH
secondary amine	R-NHR ₂	trialkylammonium ion	a proton to give amines. $\xrightarrow{-H^+} R_3 N$:
tertiary amine	R—NR ₃	tetraalkylammonium ion	

Sulfur nucleophiles

10. HS: hydrosulfide R—SH thiol

11. RS: mercaptide R—SR thioether (sulfide)

12. R_2S : thioether $R-SR_2$ trialkylsulfonium ion

Halogen nucleophiles

13. ::iodide

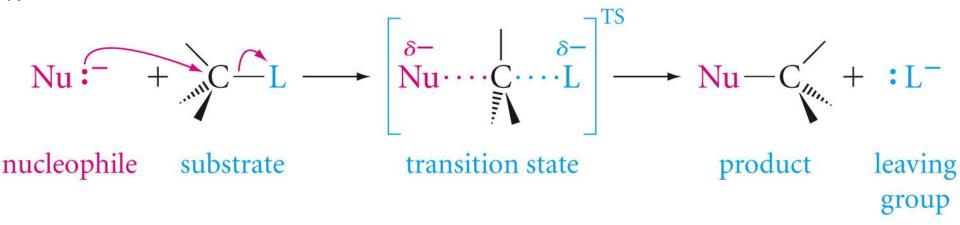
R—I:
alkyl iodide
The usual solvent is acetone. Sodium iodide is soluble in acetone, but sodium bromide and sodium chloride are not.

Carbon nucleophiles

14. $\overline{}:C \equiv N:$ cyanide R—C $\equiv N:$ alkyl cyanide (nitrile) Sometimes the isonitrile, R— $N \equiv \bar{C}:$, is formed.

15. ⁻: C≡CR acetylide R—C≡CR alkyne

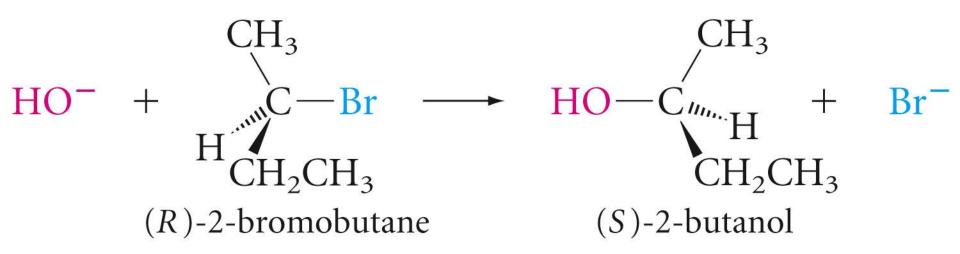
Examples


$$CH_3CH_2\overset{...}{O}: Na^+ + CH_3CH_2Br \longrightarrow CH_3CH_2\overset{...}{O}CH_2CH_3 + Na^+Br^-$$

sodium ethoxide bromoethane diethyl ether

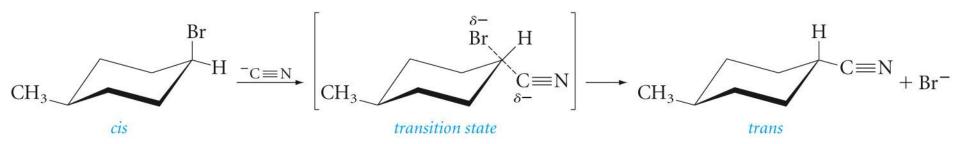
$$\begin{array}{c} CH_{3} & CH_{3} \\ H_{2}O + CH_{3} - C - CH_{3} \longrightarrow CH_{3} - C - CH_{3} + H^{+} + Br^{-} \\ \text{neutral,} & DH \\ \text{not very} \\ \text{basic} & \text{tertiary alkyl halide} & \text{(about 80\%; some methylpropene is also formed)} \end{array}$$

Nucleophilic Substitution Mechanism


molecular nucleophilic substitution mechanism

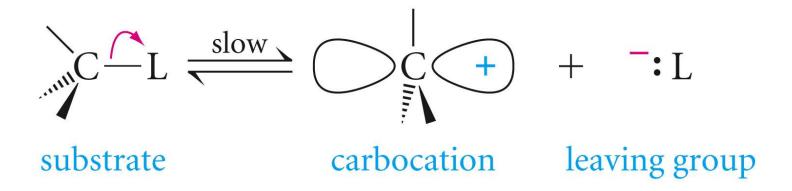
S_N2 Mechanism

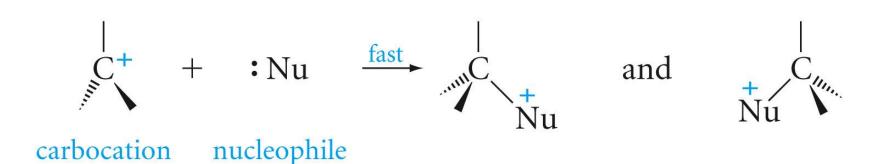
Characteristic of S_N2 mechanism


- 1. Rate of reaction = constant [alkylhalide][Nucleophile]
- 2. Inversion in stereochemistry of the product compared to the reactant
- 3. primary halide > secondary > tertiary

 S_N 2 displacement reactions occure with inversion of configuration. For example, if we treat (R)-2-bromobutane with sodium hydroxide, we obtain (S)-2-butanol

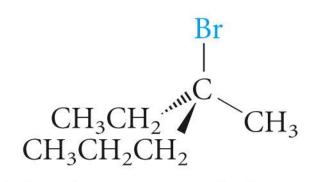
Example;

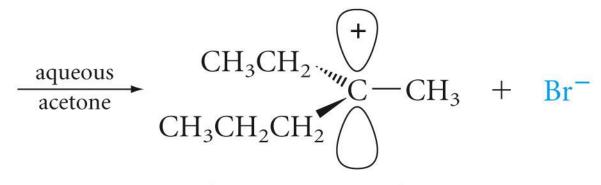

Predict the product of the S_N2 reaction of \emph{cis} -4-methylcyclohexyl bromide with cyanide ion



Arrange the following compounds in order of decreasing $S_N 2$ reactivity toward sodium ethoxide

$$\begin{array}{ccc} CH_3 & CH_3 \\ | & | \\ CH_3CH_2CHBr & CH_3CHCH_2Br & CH_3CH_2CH_2CH_2Br \end{array}$$

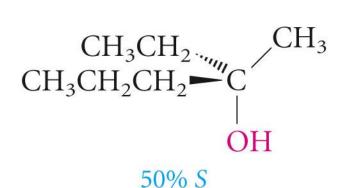

The S_N1 Mechanism



Characteristic of S_N1 mechanism

- Rate of reaction = constant [alkylhalide]
- 2. Inversion and retention in stereochemistry of the product compared to the reactant. Forming racemic mixture.
- 3. tertiary halide > secondary > primary halide

(R)-3-bromo-3-methylhexane



carbocation intermediate

(see item 3 in Table 6.1)

$$-H^+$$
 CH_3CH_2
 $CH_3CH_2CH_2$
 $CH_3CH_2CH_2$
 $CH_3CH_2CH_2$
 $CH_3CH_2CH_2$
 $CH_3CH_2CH_2$
 $CH_3CH_2CH_2$
 $CH_3CH_2CH_2$

(product from attack on the (product from attack on the bottom face of the carbocation) top face of the carbocation)

Table 6.2 — Comparison of S _N 2 and S _N 1 Substitutions				
Variables	S _N 2	S _N 1		
Halide structure				
Primary or CH ₃	Common	Rarely*		
Secondary	Sometimes	Sometimes		
Tertiary	Rarely	Common		
Stereochemistry	Inversion	Racemization		
Solvent	Rate is retarded by polar protic solvents and increased by polar aprotic solvents	Because the intermediates are ions, the rate is increased by polar solvents		
Nucleophile	Rate depends on nucleophile concentration; mechanism is favored when the nucleophile is an anion	Rate is independent of nucleophile concentration; mechanism is more likely with neutral nucleophiles		

^{*}Allyl and benzyl substrates are the common exceptions (see Problem 6.7b).

1. Negative ions are more nucleophilic, or better suppliers, than the corresponding neutral molecules.

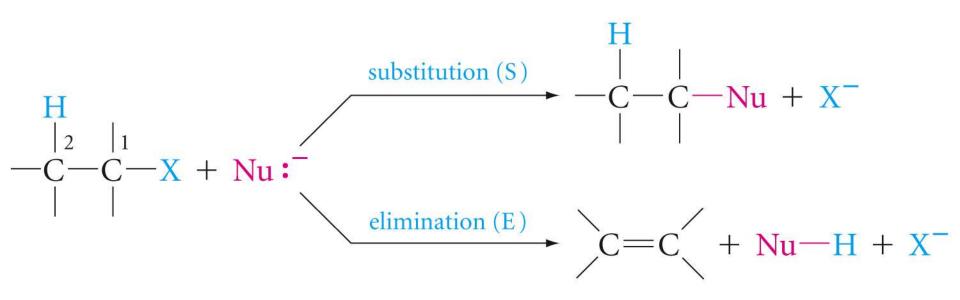
2. Elements low in the periodic table tend to be more nucleophilic than elements above them in the same column

$$HS^{-} > HO^{-}$$

$$l^{-} > Br^{-} > Cl^{-} > F^{-}$$

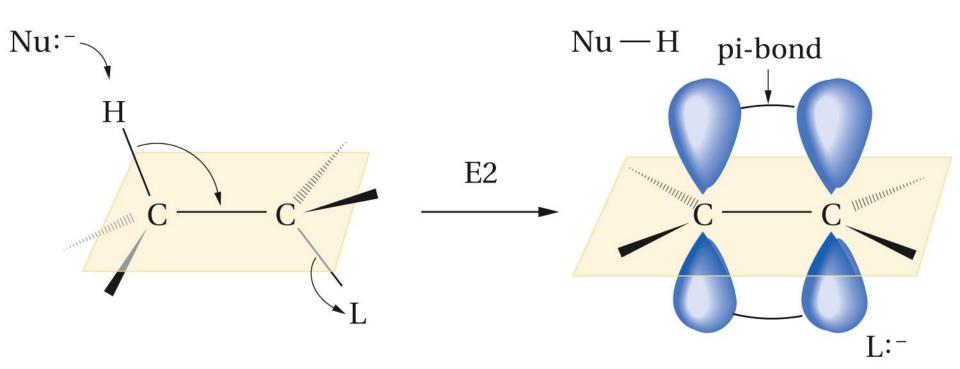
3. Across a row in the periodic table, more electronegative elements (the more tightly an element holds electron to itself) tend to be less nucleophilic.

$$R \to R \to R \to R^ N^- > R - O^- > F^-$$
 and $H_3N: > H_2O: > HF: :$


Which mechanism, S_N1 or S_N2 , would you predict for each of the following reactions?

$$CH_3CHCH_2CH_2CH_3 + CH_3OH \longrightarrow CH_3CHCH_2CH_2CH_3 + HBr$$

$$Br$$


$$OCH_3$$

2- Dehydrohalogenation, and Elimination Reaction; The E2 and E1 Mechanisms

$$\begin{array}{c} \text{CH}_3 & \text{CH}_2 \\ | \\ \text{-CN} + \text{CH}_3 - \text{C} - \text{CH}_3 \longrightarrow \text{CH}_3 - \text{C} - \text{CH}_3 + \text{HCN} + \text{Br}^- \\ \text{anion} & \text{methylpropene} \\ \text{Br} & \text{tertiary alkyl halide} \end{array}$$

$$\begin{array}{c} \text{CH}_{3} & \text{CH}_{2} \\ | \\ \text{OH} + \text{CH}_{3} - \text{C} - \text{CH}_{3} & \text{CH}_{3} - \text{C} - \text{CH}_{3} & + \text{H}_{2}\text{O} & + \text{Br}^{2} \\ | \\ \text{strong} & | \\ \text{base} & \text{methylpropene} & (\text{H} - \text{OH}) \\ \\ \text{tertiary alkyl halide} & \end{array}$$

E1 mechanism

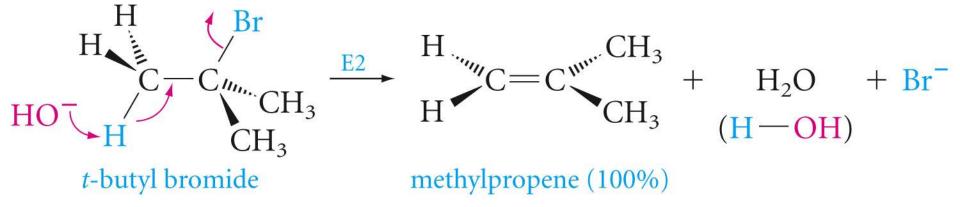
$$\begin{array}{c|c}
H & H \\
-C - C - L & slow \\
\hline
-C - C^+ + : L^- \\
substrate & carbocation
\end{array}$$

$$\begin{array}{c|c}
H \\
-C \\
-C \\
-H^{+}
\end{array}$$

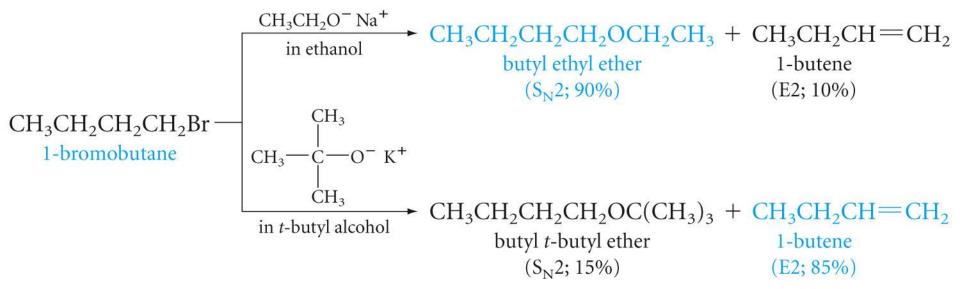
$$\begin{array}{c|c}
C \\
-H^{+}
\end{array}$$

$$\begin{array}{c|c}
C \\
-C \\
-H^{+}
\end{array}$$

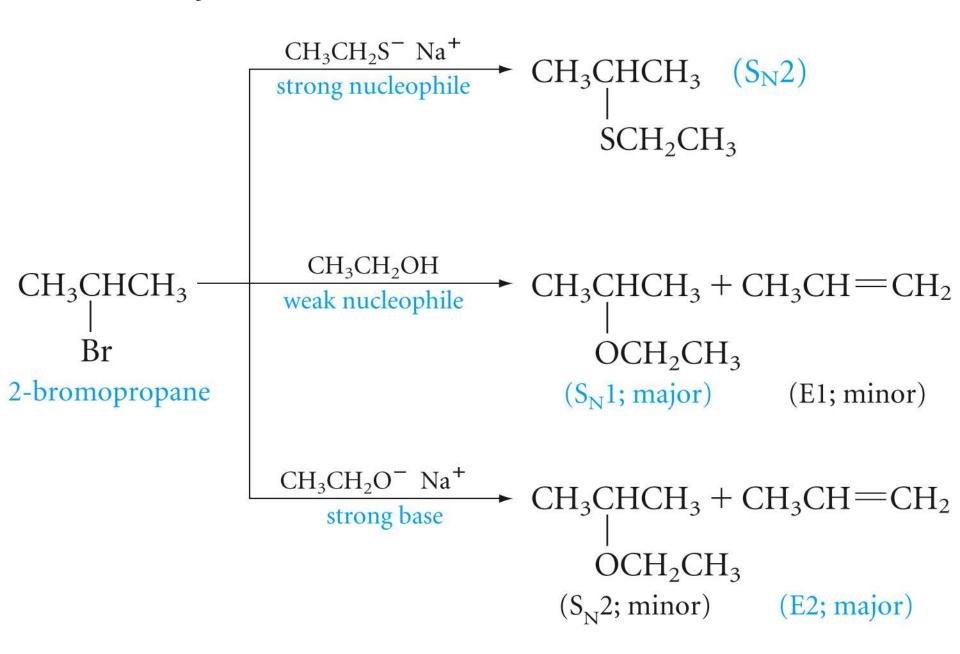
$$\begin{array}{c|c}
C \\
-C \\
+H^{+}
\end{array}$$
E1


Substitution and Elimination in Competition

Tertiary Halides
$$(CH_3)_3CBr$$


$$(CH_3)_3CBr$$

$$t$$
-butyl bromide
$$(CH_3)_2C = CH_2 + H^+$$


$$(about 20\%)$$

Primary Halides

Secondary Halides

