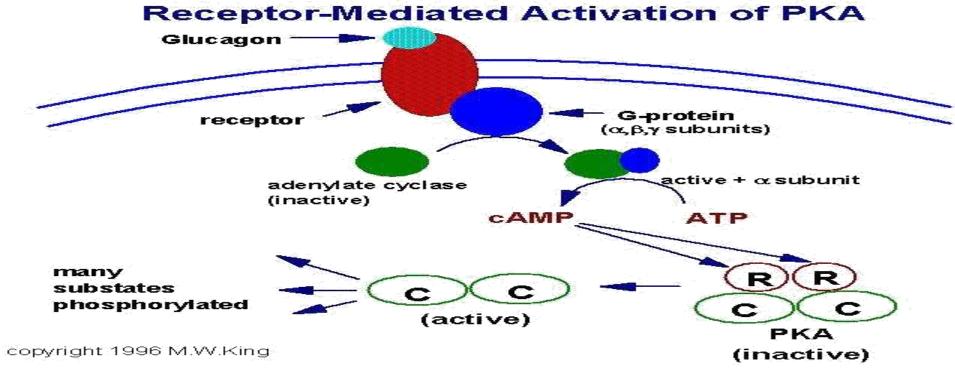
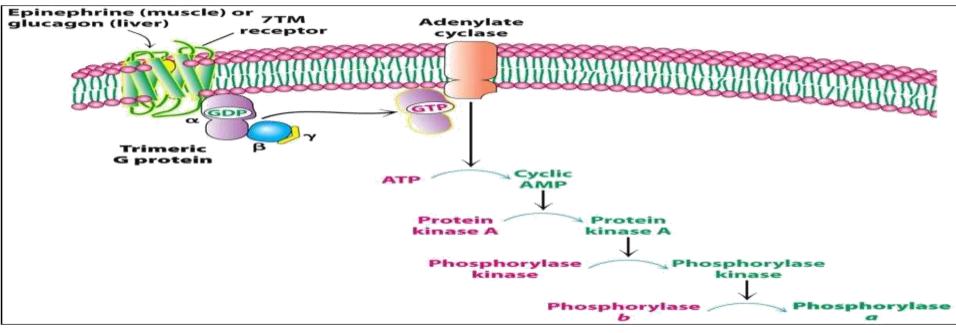
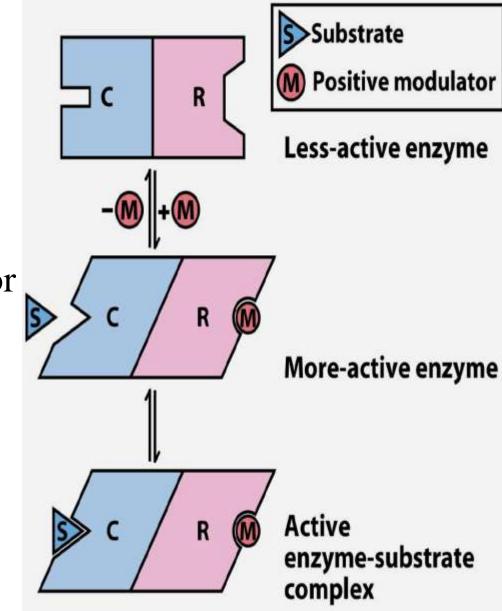

Enzymology- An overview-4

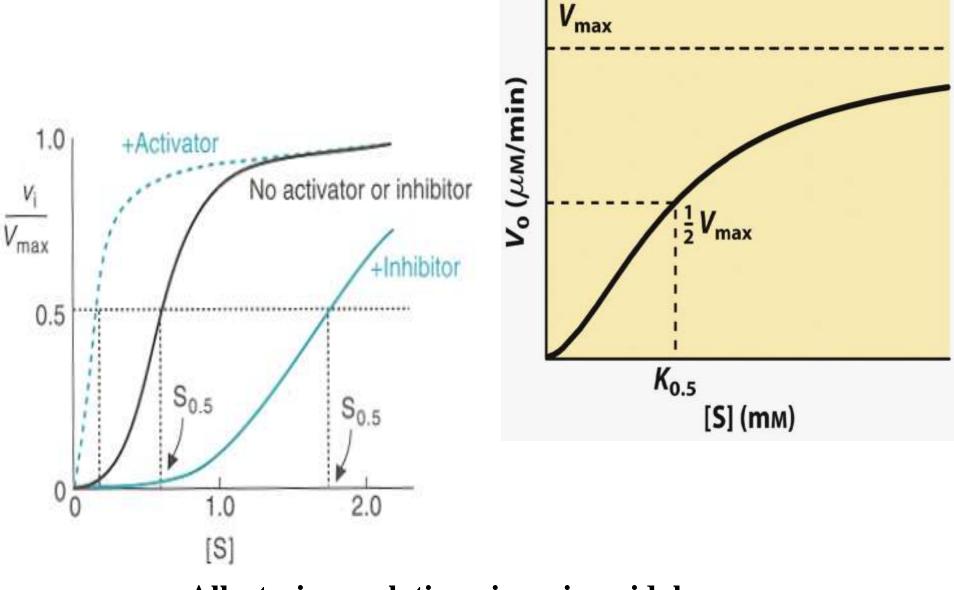

Regulation of enzyme activity


Several ways to regulate enzyme activity:

- 1. Modulation of enzyme activity:
 - A- Covalent modification.
 - B- Allosteric modulation.
- 2. Proteolytic cleavage of proenzymes.
- 3. Compartmentation.
- 4. Enzyme production.
- 5. Feedback inhibition

- Usually by the addition of or lysis of phosphate (PO4) groups to and from enzymes.
- Some enzymes are active when phosphorylated, while, others are inactive when phosphorylated.





B- Allosteric regulation:

- Allosteric regulation is the term used to describe cases where an enzyme is functioning at one site, then, affected by binding of a regulatory molecule at another site.
- Allosteric regulation may either inhibit or stimulate an enzyme activity by changing the enzyme either to its active or inactive forms.
- -The binding of an allosteric activator stabilizes its active form, while binding the allosteric inhibitor stabilizes the inactive form of the enzyme.
- End products are often inhibitors.
- Often allosteric modulators do not resemble the substrate or the product of the enzyme catalyzing the reaction.
- Allosteric modulators bind non-covalently to the enzyme at a site rather than the substrate binding site.

- Allosteric enzymes usually have quaternary structure
- Allosteric enzymes do not exhibit typical Michaelis- Menton
- kinetics.
- Instead, the curve is sigmoidal, which indicates that the binding of substrate to the enzyme changes (e.g. increases) the affinity of the enzyme for substrate.
- Some allosteric modulators alters the Km, the Vmax remains constant.
- -The modulators are not altered by the enzyme.

Allosteric regulation gives sigmoidal curve Effects of a positive (+) and a negative (-) modulator that alter the Km without altering the maximum velocity Vmax

2- Proteolytic cleavage of proenzyme:

- Zymogens activation: certain proteins are synthesized and secreted as inactive precursor proteins known as **proproteins**.
- The proproteins of enzymes are termed proenzymes or zymogens.
- Selective proteolysis converts a proprotein by one or more successive proteolytic "**clips**" to a form that exhibits the characteristic activity of the mature protein, such as , its enzymatic activity.
- The digestive enzymes pepsin, trypsin, and chymotrypsin (proproteins = pepsinogen, trypsinogen, and chymotrypsinogen, respectively), several factors of the blood clotting and blood clot dissolution cascades, are examples of Zymogen activation.

Proteolytic cleavage of proenzyme(zymogen)

Garrett & Grisham: Blochemistry, 2/e Figure 15.4 Chymotrypsinogen (inactive zymogen) 13 14 15 147 148 Cleavage at Arg 15 by trypsin π-Chymotrypsin (active enzyme) 147 148 13 14 15 245 Self digestion at Leu13. Tyr146, and Asn145 by π-chymotrypsin 147 148 Ser Arg Thr Asn α-Chymotrypsin (active enzyme) He Leu Tyr Ala 13 16 196 149 245 Saunders College Publishing

Enzyme/substrate Compartmentation:

- Compartmentation ensures metabolic efficiency & simplifies regulation
- Segregation of metabolic processes into distinct subcellular locations like the cytosol or specialized organelles (nucleus, endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria, etc.) is another form of regulation

Plasma membrane Cytosol

Mitochondria

Nucleus
Endoplasmic reticulum
(rough and smooth)
Lysosomes

Golgi apparatus

Peroxisomes

Amin.o acid transport systems, Na*-K* ATPase
Glycolysis, glycogenesis and glycogenolysis, hexose
monophosphate pathway, fatty acid synthesis,
purine and pyrimidine catabolism, aminoacyltRNA synthetases
Tricarbovylic acid cycle, electron transport and oxida

Tricarboxylic acid cycle, electron transport and oxida tive phosphorylation, fatty acid oxidation, urea synthesis

DNA and RNA synthesis

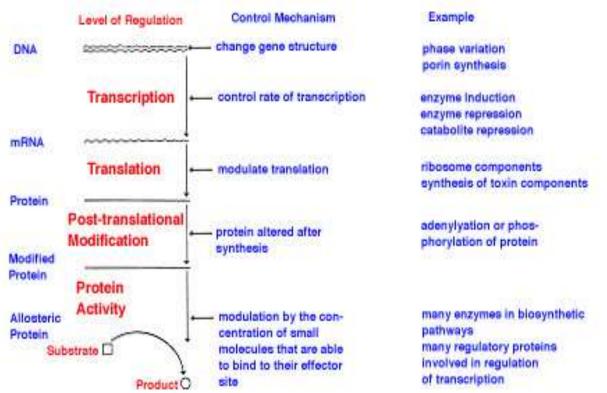
Protein synthesis, steroid synthesis, glycosylation, detoxification

Hydrolases
Glycosyl transferases, glucose-5-phosphatase, forma
tion of plasma membrane and secretory vesicles

Catalase, p-amino acid oxidase, urate oxidase

4- Enzyme production (hormonal regulation):

- Enzyme synthesis (transcription and translation of enzymes genes) can be induced or decreased by hormonal activity that controls the genes.
- -This mechanism of enzyme regulation is slower than other mechanisms (**long-term regulation**), i.e. covalent and allosteric modulation of enzyme activity.
- Causes changes in the concentration of certain "inducible enzymes" (are adaptive, i.e. synthesized as needed by the cell). (Constitutive enzymes synthesis is at a constant rate).
- Induction occurs usually by the action of hormones, (e.g. steroid and thyroxine) and is exerted by changes in the expression of gene encoding the enzymes.
- More or less enzyme can be synthesized by hormonal activation or inhibition of the genes.


Example:

- Insulin induces increased synthesis of enzymes: glucokinase, glycogen synthase and PFK-1

5- Feed back inhibition v/s feed back regulation:

- It is the regulation of a metabolic pathway by using end product as an inhibitor within the pathway to keep cells from synthesizing more product than necessary.
- Dietary cholesterol decreases hepatic synthesis of cholesterol, (feedback regulation not feedback inhibition).
- HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis, is affected, but cholesterol does not feedback-inhibit its activity.

- Regulation in response to dietary cholesterol involves the effect of cholesterol or a cholesterol metabolite on the expression of the gene that encodes HMG-CoA reductase (enzyme repression).

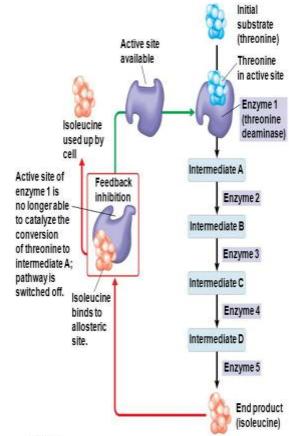


Figure 8.21