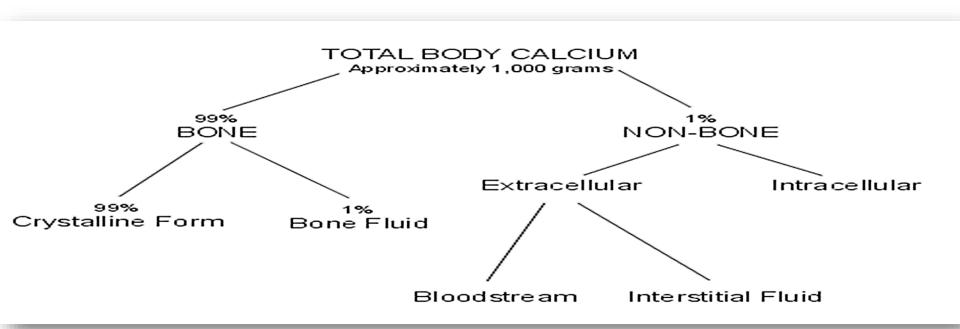


Calcium metabolism

Calcium is an essential element.

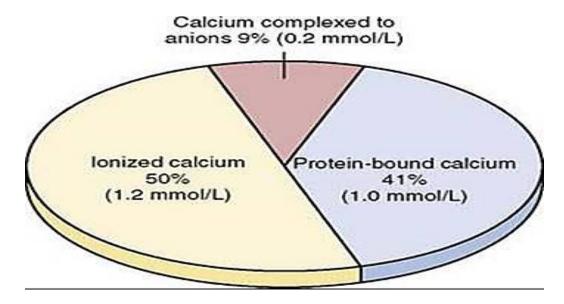
Calcium is important for many physiological functions in the body as:

- 1. It maintains normal excitability of nerves and muscles.
- 2. It is important in neuromuscular transmission.
- 3. It is essential for muscle contraction.
- 4. It is essential for release of most neurotransmitters.
- 5. It is a second messenger in many hormonal actions.
- 6. Bone and teeth mineralization.
- 7. It is essential for blood coagulation.


Absorption of calcium:

- By an active process from the upper part of the small intestine (duodenum).
- It is facilitated by:
- Acids as HCl, amino acids and ascorbic acid which renders Ca²⁺ soluble.
- 1,25 dihydroxycholecalciferol (active Vitamin D₃).
- PTH.
- It is inhibited by:
- Excess phytic acid and oxalates in diet \rightarrow insoluble Ca²⁺ salts.
- Caffeine.

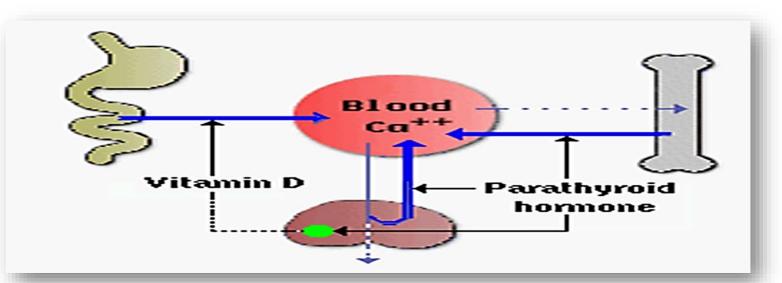
Total body calcium:

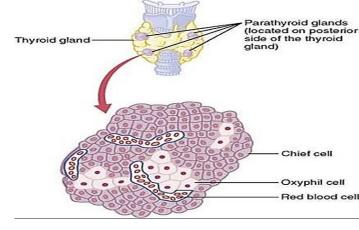

The average adult human body contains about 1000-1100 gm calcium.

The Ca²⁺ present in **intracellular and extracellular fluids** represents about **1%** of the total calcium content of the body. The remaining **99%** is present in the **bone**.

Calcium in plasma:

- Normal plasma calcium level averages 10 mg% (9-11 mg%).
- Plasma calcium is present in **3 forms**:
- 50% (about 5 mg%) ionized and diffusible. It is the biologically active fraction that is important for most functions of calcium in the body.
 50%:
- 41% is bound to plasma proteins (albumin and globulins, specially albumin) and is non-diffusible through cell membranes (about 4.5 mg%). It is biologically inactive.
- 9% forming complexes with citrates and phosphates and can diffuse with difficulty (diffusible). About 0.5 mg%




Calcium in bones:

- Bones contain about 1000 gm of calcium (99% of total body calcium), which is 2 types:
- 99.5% is present as stable salts (hydroxyapatite crystals) that are very slowly exchangeable with plasma calcium.
- 0.5% (about 5 gm) is readily exchangeable. It constitutes a reservoir that is in equilibrium with the plasma calcium and keeps it constant at 7 mg% in absence of PTH.

Calcium Homeostasis

- Normal plasma calcium level ~ <u>9-11 mg%.</u>
- Plasma calcium level is <u>kept constant</u> mainly by the action of <u>three</u> <u>hormones</u>:
- 1. <u>Parathyroid hormone</u> (PTH): it 个 plasma calcium level when decreased.
- 2. <u>Calcitonin hormone</u>: it \downarrow plasma calcium level when increased.
- 3. <u>Active vitamin D_3 </u>: it \uparrow intestinal absorption of calcium from GIT and \uparrow calcium deposition in bone.

Parathyroid Hormone (PTH)

Parathyroid hormone or parathormone (PTH) is a polypeptide hormone (containing 84 amino acids) which is secreted by parathyroid glands.

- Actions:
- Normally, PTH is a major regulating factor for both Ca²⁺ and inorganic phosphate (PO₄³⁻) concentrations.
- Normally, plasma PO₄³⁻ concentration is inversely related to plasma calcium concentration.
- [PO4³⁻] ∝ 1/[Ca²⁺]
- [Ca²⁺] x [PO4³⁻] = K (constant)
- This constant K is known as the Solubility Product.
- The main function of PTH is to increase plasma Ca^{2+} level and decrease plasma PO_4^{3-} level (so as to maintain the solubility product constant).

Mechanism:

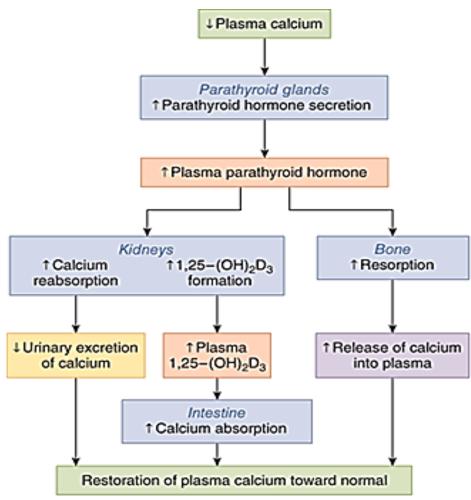
PTH increases plasma Ca²⁺ level by 3 mechanisms:

- 1. Effect on the kidney.
- 2. Effect on bones.
- 3. Effect on intestine.

(1) Effect on Kidney:

- 1. PTH increases the reabsorption of Ca²⁺ in the distal convoluted tubules $\rightarrow \uparrow$ Plasma Ca²⁺ level (rapid physiological adjustment) and \downarrow Ca²⁺ excretion in urine.
- 2. PTH decreases the reabsorption of phosphates in the proximal convoluted tubule $\rightarrow \uparrow$ excretion of phosphates in urine $\rightarrow \downarrow$ plasma phosphate.

(2) Effect on Bones:


PTH stimulates the Ca²⁺ mobilization from bone into the plasma $\rightarrow \uparrow$ plasma Ca²⁺ level by:

increased osteoclastic (bone eating cells) activity \rightarrow which destroy bone by releasing H⁺ and protease enzymes resulting in bone resorption and Ca²⁺ mobilization into bloodstream \rightarrow increased plasma Ca²⁺. Formation of new osteoclasts.

(3) Effect on Intestine:

PTH increases absorption of Ca²⁺ indirectly:

PTH activates the 1- α hydroxylase of the kidney responsible for transformation of 25, hydroxycholecalciferol into 1,25-dihydroxycholecalciferol (active vitamin D₃ metabolite), thus it increases Ca²⁺ absorption from the intestine.

Source: Kim E. Barrett, Susan M. Barman, Scott Boltano, Heddwen L. Brooks: Ganong's Review of Medical Physiology, 25th Ed. www.accessmedicine.com

Copyright @ McGraw-Hill Education. All rights reserved.

Mechanism of PTH action:

It acts mainly through increasing cAMP content in target cells.

Regulation (Control) of PTH secretion:

- No tropic hormone from the anterior pituitary to control PTH secretion.
- The main regulating factor for PTH secretion is plasma ionized Ca²⁺ level which directly controls the parathyroid glands by a negative feedback mechanism:
- \downarrow Ionized Ca²⁺ stimulates while \uparrow ionized Ca²⁺ inhibits PTH secretion.
- Active form of vitamin D₃ (calcitriol): its increase $\rightarrow \downarrow$ PTH and vice versa.
- Plasma PO_4^{3-} level: its increase $\rightarrow \uparrow$ PTH secretion by lowering plasma Ca^{2+} level.

CALCITONIN

- It is a calcium-lowering peptide hormone (containing 32 amino acids).
- It is secreted by the parafollicular cells (C cells) of the thyroid gland.
- Calcitonin has a Ca²⁺ lowering effect if plasma Ca²⁺ level is raised above normal.
- Its actions are mediated by increasing intracellular content of cAMP.
 <u>Actions</u>:
- Calcitonin decreases plasma Ca²⁺ level through acting on bones and kidneys
- Calcitonin acts mainly and directly on bones.

Effect on bones:

Calcitonin inhibits bone resorption by reducing activity of osteoclasts (thus it helps Ca²⁺deposition in bones).

It decreases the formation of new osteoclasts.

Effect on the Kidney:

Calcitonin increases urinary excretion of Ca²⁺ by inhibiting its reabsorption from the renal tubules.

Regulation of Calcitonin:

Calcitonin is regulated by:

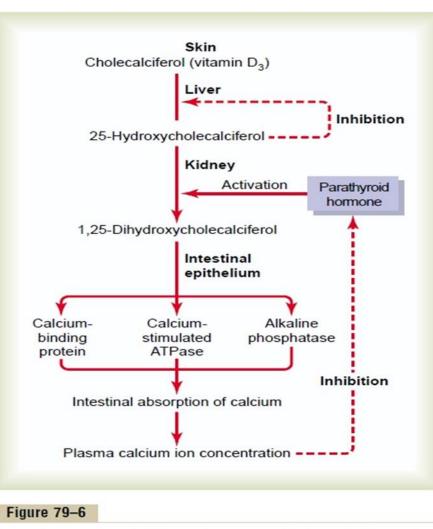
- Plasma Ca²⁺ level: increased Ca²⁺ level stimulates calcitonin secretion and vice versa.
- GIT hormones as gastrin, secretin and CCK stimulate calcitonin secretion: Its release following meals (by gastrin hormone) helps prevention of postprandial hypercalcemia.

Importance of calcitonin:

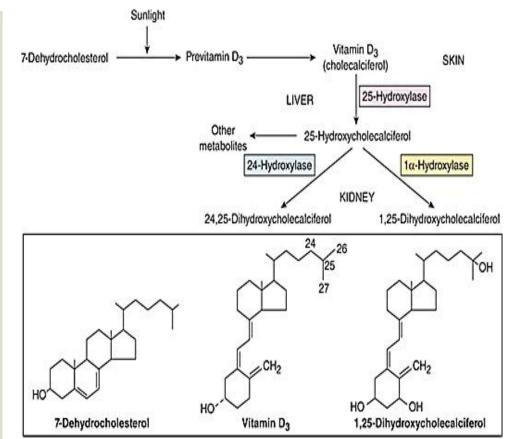
- Its plasma level is more in children than in adults, which helps bone growth and development of the skeleton.
- It is used in treatment of bone diseases which is characterized by excessive osteoclastic activity.

ACTIVE FORM OF VITAMIN D₃

- Vitamin D₃ is one of fat soluble vitamins.
- It is naturally present in certain foods especially fish liver oil.
- Its provitamin 7-dehydrocholesterol is present under skin.
- UV sunlight penetrates the skin to convert 7-dehydrocholesterol to cholecalciferol.
- In the liver, cholecalciferol undergoes 25-hydroxylation to yield 25(OH) cholecalciferol (25-HCC; calcidiol).
- In the kidney , 25(OH) cholecalciferol undergoes further 1αhydroxylation to produce 1,25 – dihydroxycholecalciferol (1,25 DHCC; Calcitriol). Its production in the kidney (in proximal convoluted tubule) is catalyzed by 1α -hydroxylase enzyme (activated by PTH).
- 1,25 dihydroxycholecalciferol is transported in the bloodstream.
- It is considered to be a steroid hormone (and similar to these hormones, it also acts on intracellular receptors that induce transcription of mRNA).
- Activation of vitamin D₃ needs healthy liver and kidney with PTH.

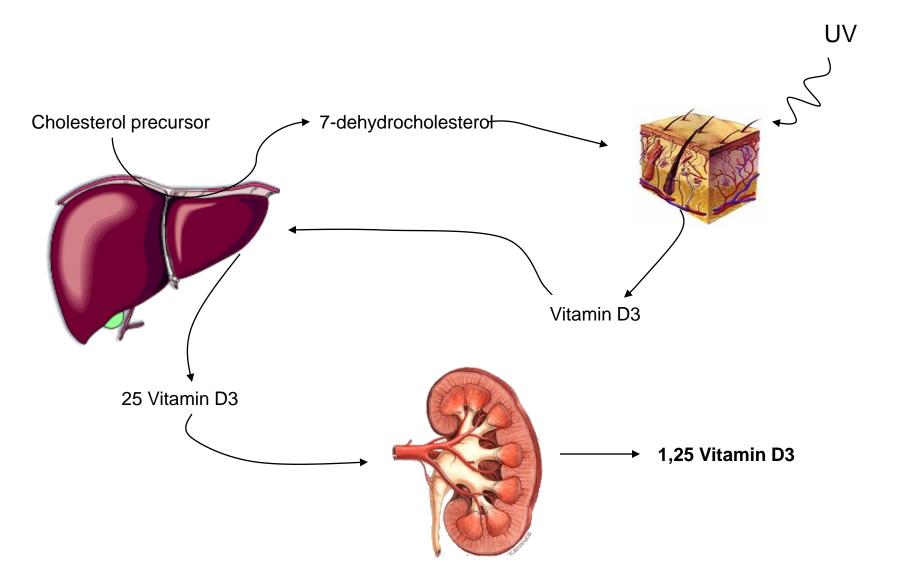

Action of 1,25-dihydroxycholecalciferol (Calcitriol):


- It increases Ca²⁺ absorption (and PO₄³⁻) from intestine by:
- Stimulating synthesis of a protein called calbindin-D that facilitates Ca²⁺ transport across the intestinal epithelium.
- \odot Increasing the Ca^{2+} H^+ ATPase in the intestinal cells which is needed to pump Ca^{2+} into the ECF.
- It facilitates Ca²⁺ reabsorption in distal tubules of the kidneys.
- It is necessary for bone development (by increasing the activity of osteoblasts) as well as calcification of bone matrix. However, in high concentrations, it mobilizes Ca²⁺ and PO₄³⁻ from bone (by secondary increase in activity of osteoclasts).


Regulation (Control) of 1,25-dihydroxycholecalciferol (Calcitriol):

Activity of 1- αhydroxylase enzyme is the main factor in regulation of calcitriol synthesis. It is affected by:

- PTH.
- Plasma Ca²⁺ level.
- Plasma calcitriol level: its excessive increase leads to:
- $\circ~$ Feedback inhibition of 1- α hydroxylase as well as PTH secretion.
- \circ Stimulation of formation of inactive metabolite 24,25 (OH)₂CC.



Source: Kim E. Barrett, Susan M. Barman, Scott Boitano, Heddwen L. Brooks: Ganong's Review of Medical Physiology, 25th Ed. www.accessmedicine.com Copyright @ McGraw-Hill Education. All rights reserved.

1,25 DHCC (Calcitriol)

ΤΕΤΑΝΥ

<u>Definition</u>:

It is a state of spastic contraction of skeletal muscles due to increased neuromuscular excitability resulting from a decrease in the ionized plasma Ca²⁺ level.

Causes: are the causes of hypocalcemia:

- 1. Hypoparathyroidism.
- 2. Vitamin D_3 deficiency (decreases Ca^{2+} absorption from intestine).
- 3. Low calcium content in diet or diets that combine with calcium and form unabsorbable calcium compounds.
- 4. Alkalosis \rightarrow precipitation of Ca²⁺.
- 5. Renal failure (due to decreased formation of 1,25-DHCC as well as calcium reabsorption in the distal convoluted tubules).

Types and manifestations of tetany

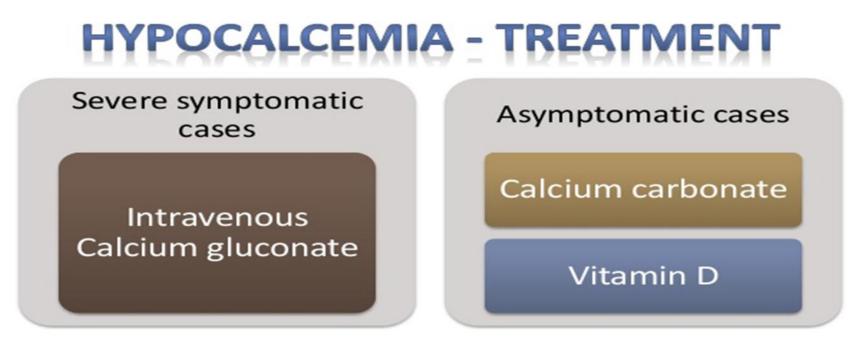
Depending on plasma Ca²⁺ level, there are 2 types of tetany: 1. Manifest tetany:

Occurs if the plasma Ca²⁺level drops below 7 mg %. The manifestations of tetany are quite apparent.

- Spasmodic contractions of skeletal muscles:
- $\circ~$ In the hands & feet \rightarrow carpopedal spasm
- Carpal spasm (Obstetrician's hand):There is flexion of the wrist and metacarpophalangeal joints with extension of the interphalangeal joints. The thumb is adducted.
- Pedal spasm: the feet and toes are plantar flexed.
- In severe conditions: generalized convulsions may occur.
- In the laryngeal muscles→ asphyxia.

2. Latent tetany:

- \circ Occurs if plasma Ca²⁺ level is above 7 mg %, but below 9 mg %.
- The manifestations of tetany are not apparent, but are liable to occur if any condition that tends to lower the plasma calcium occurred e.g. pregnancy, lactation, or hyperventilation.
- It can be diagnosed by measuring ionized Ca²⁺ plasma level.


Carpal spasm

Treatment of tetany

- 1. During the attack: i.v. calcium salts (gluconate or chloride) must be given very slowly to avoid calcium rigor.
- 2. In between the attacks or for cases of latent tetany:
- Oral calcium + vitamin D.

OTHER HORMONES AFFECTING Ca²⁺ METABOLISM

Growth hormone: promotes bone and cartilage growth and increases intestinal absorption of Ca²⁺.

Thyroid hormones: thyroid hormones cause hypercalcemia, hypercalciuria and in some instances osteoporosis.

Glucocorticoids:

Decrease plasma calcium level by decreasing intestinal absorption and increase the renal excretion (anti-vitamin D_3).

Prolonged administration of glucocorticoids stimulates osteoclasts causing osteoporosis.

Estrogens: promote bone growth and development by stimulating osteoblasts and inhibiting osteoclasts. When estrogens are reduced at menopause, osteoporosis is accelerated.

Testosterone: stimulates bone and cartilage growth.

Insulin: stimulates bone growth by its anabolic effect.

THANK YOU

THANK YOU