Gastrointestinal Tract Module Bacterial infections Practical session

Mathhar ahmad abu morad MD Department of Microbiology and Pathology Faculty of Medicine, Mu'tah University

Objectives

To become familiar with:

- ✓ the selective and differential media used to isolate the GIT infections associated bacteria
- \checkmark the biochemical tests used to identify these bacteria

Types of specimen

- ✓ Stool (direct culture)
- ✓ Stool in fecal transport system (in delay longer than 1 hour)
- ✓ Rectal swab

• Pass swab beyond anal sphincter, carefully rotate, and withdraw

Criteria of specimen rejection

- ✓ Specimen contaminated with urine, residual soap, or disinfectants.
- ✓ Specimens received in grossly leaking transport containers
- ✓ Dry specimens
- ✓ Specimens submitted in fixative or additives

Patient preparation

- Instruct the patient on how the specimen should be collected and transferred to the container
- provide him with sticks and containers

Specimen collection

- A sample is transferred with the sticks to the container
- ✓ The specimen should contain at least 5 g of feces
- Those parts that contain blood and/or mucus should be selected
- ✓ Close the lid properly

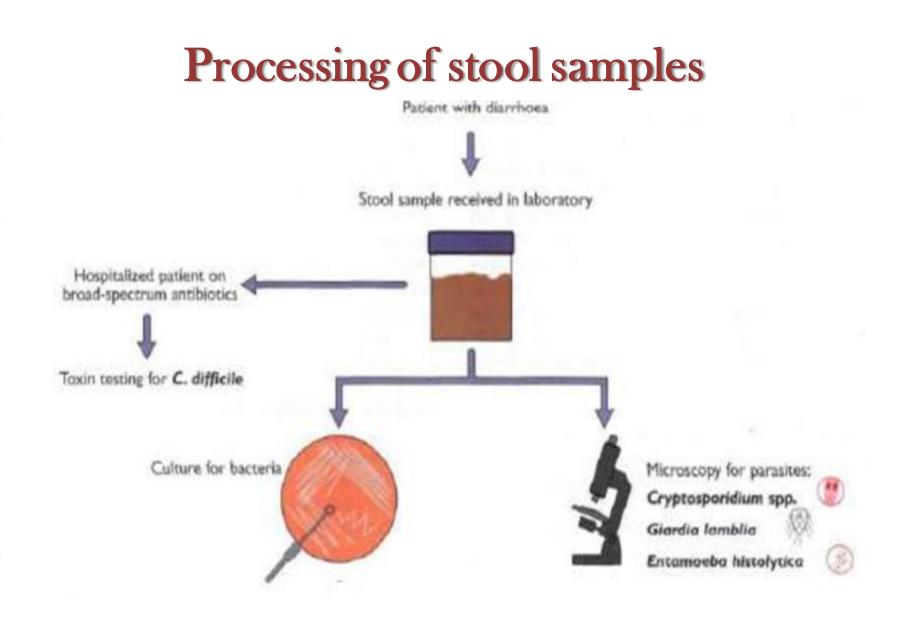
Who will collect the specimen?

The patient. If stool is unobtainable, nursing staff or physician will collect fecal swab

Time relapse before processing the sample

Stool samples should be examined and cultured as soon as possible after collection.

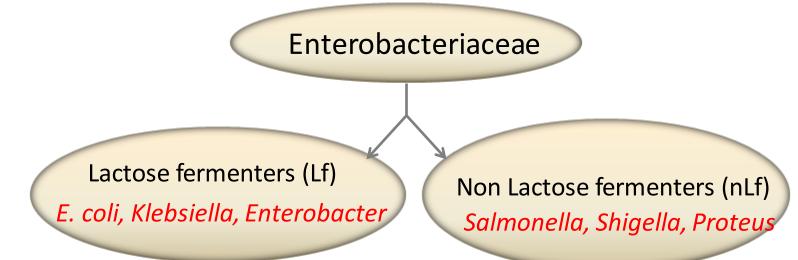
Indications for stool culture include:


Doctors are most likely to order a stool culture for patients with any of the following characteristics:

- ✓ Bloody diarrhea and/or fecal leukocytes
- ✓ Tenesmus (is the constant feeling of the need to empty the bowel, accompanied by pain, and cramping)
- ✓ Severe or persistent symptoms
- ✓ Recent travel to a third world country
- ✓ Severe dehydration

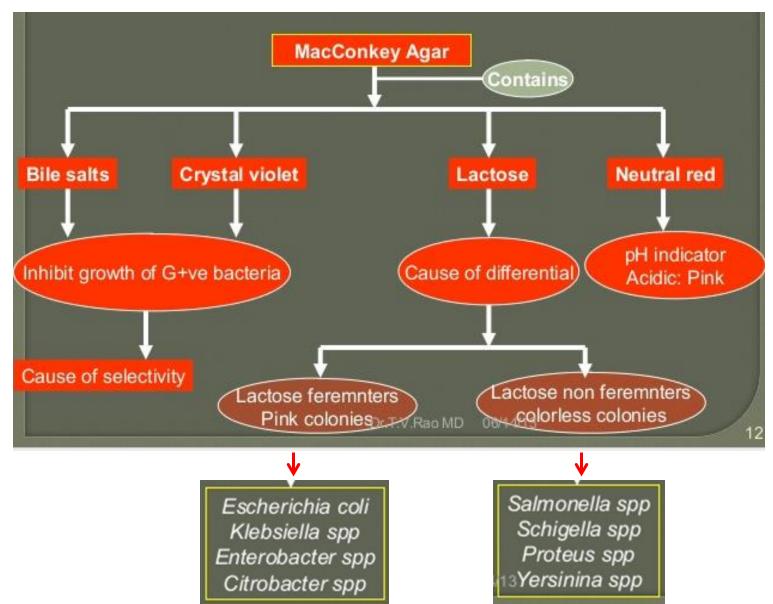
Enterobacteriaceae

General Characteristics


- Gram-negative bacilli
- Oxidase –ve
- Catalase +ve
- Ferment glucose with or without gas production
- Reduce nitrate to nitrite (with few exceptions)
- facultative anaerobes

Identification of *Enterobacteriaceae*

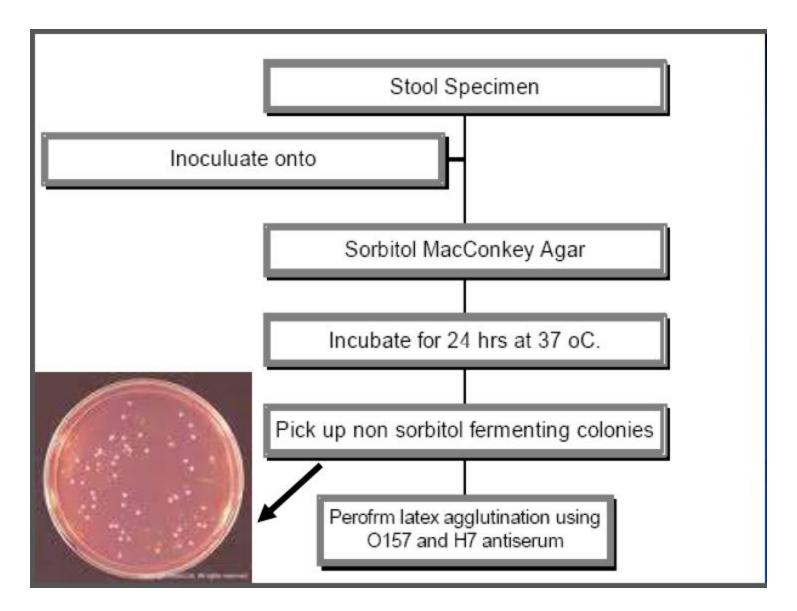
1- Using selective and differential media


Enterobacteriaceae are divided into two main groups according to lactose fermentation

There are several selective and differential media used to isolate and distinguish between Lf & nLf including

- ✓ MacConkey agar
- ✓ Salmonella Shigella agar (SS agar)

MacConkey agar is a selective and differential media for Enterobacteriaceae


MacConkey agar

Lactose fermenter

Non Lactose fermenter

Suspected EHEC (O157:H7)

Diagnosis of Salmonella & Shigella

1- Salmonella Shigella agar (SS agar) Purpose

For isolation and differentiation of Salmonella & Shigella

Components

- Brilliant green dye & sodium citrate: inhibit the growth of most intestinal flora
- ✓ Lactose
- \checkmark Neutral red: pH indicator, red in acidic conditions
- ✓ Sodium thiosulfate $(Na_2S_2O_3)$: sulfur source
- ✓ <u>Ferric citrate: H2S indicator</u>

Diagnosis of Salmonella & Shigella

1- Salmonella Shigella agar (SS agar)

Results

- ✓ Lactose fermenters: pink to red colonies (few can grow)
- ✓ Non lactose fermenters: translucent, colorless colonies with or without black centers

Shigella: colorless colonies without black centers

Salmonella: colorless colonies with black centers

Salmonella enterica subsp. enterica

Diagnosis of Salmonella & Shigella

2- Hektoen enteric agar (cat eye apperance)

Identification of Enterobacteriaceae

2-Using special biochemical reactions

The differentiation of the principle groups of Enterobacteriaceae Can be accomplished on the basis of <u>their biochemical prosperities</u> <u>and enzymatic reactions</u> in <u>the presence of the specific substrate</u>

One important group of biochemical reactions is:

Indole, Methyl red, Vogus proskaur, Citrate utilization tests (IMViC)

E. Coli										
Glucose	Lactose	Maltose	Mannite	Sucrose	Indole	MR	VP	Citrate	urease	H2S
A/G	A/G	A/G	A/G	A/G	+	+	-	-	-	-
K.aerogenes										
Glucose	Lactose	Maltose	Mannite	Sucrose	Indole	MR	VP	Citrate	urease	H2S
A/G	A/G	A/G	A/G	A/G	-	-	+	+	+	-
SH. dysenteriae										
Glucose	Lactose	Maltose	Mannite	Sucrose	Indole	MR	VP	Citrate	urease	H2S
Α	-	-	-	-	-	+	-	-	-	-
SH. flexneri										
Glucose	Lactose	Maltose	Mannite	Sucrose	Indole	MR	VP	Citrate	urease	H2S
Α	-	-	Α	-	-	+	-	-	-	-
	SH. sonnei									
Glucose	Lactose	Maltose	Mannite	Sucrose	Indole	MR	VP	Citrate	urease	H2S
Α	Α	-	Α	-	-	+	-	-	-	-

A/G produce Acid and Gas **A** produce Acid only

Cholera identification

Identification

- ✓ Gram negative curved rods (comma shape).
- ✓ Motile (single polar flagellum)
- ✓ Oxidase positive, catalase positive

culture

- ✓ Thiosulfate citrate bile salt sucrose agar or TCBS agar
- ✓ The medium is alkaline (pH 8.6) which enhances the growth of Vibrio species

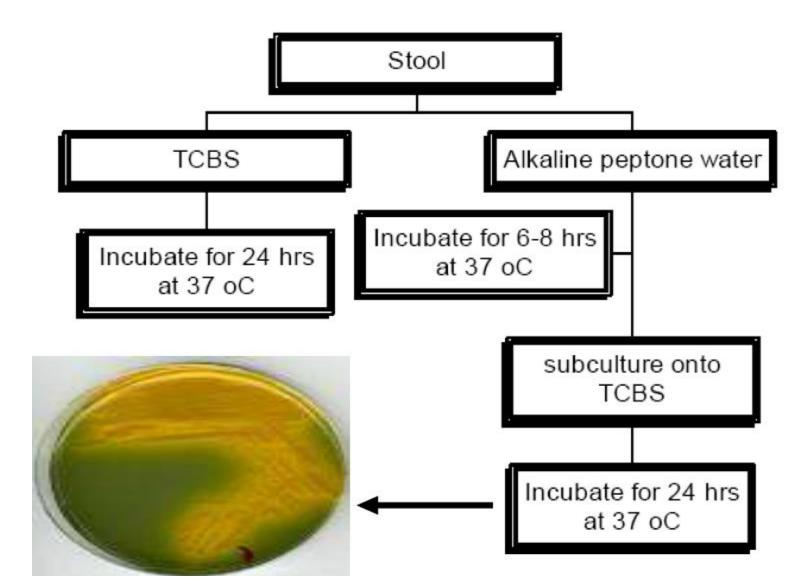
Important components

- ✓ Sucrose: sugar source
- ✓ Bromothymol blue: pH indicator
- pH<6.0 yellow pH>7.6 -blue

Cholera identification

Results

- ✓ Vibrio cholera: Ferment sucrose smooth yellow colonies
- ✓ Vibrio parahemolyticus: non-sucrose fermenter, green colonies



TCBS media

V. cholera

V. parahemolyticus

Cholera identification

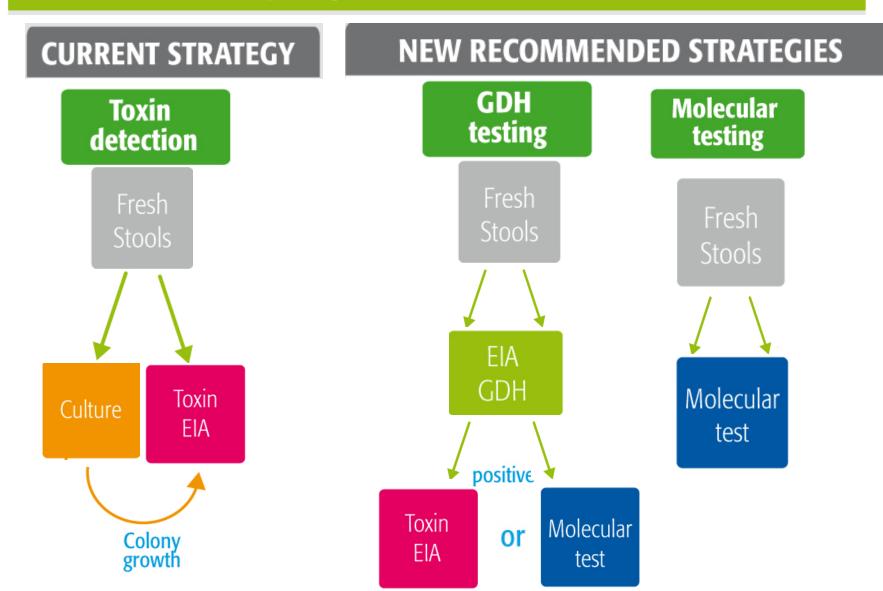
S. aureus associated food poisoning

- > 25% of healthy people are carriers
- Mainly S. aureus food poisoning is diagnosed in case of outbreaks
- Diagnosis based on
 - \checkmark gram positive cocci
 - ✓ catalase & coagulase positive
 - ✓ DNase positive
 - ✓ β-hemolysis on blood agar
 - \checkmark Grow on MSA with mannitol fermentation

MSA

Clostridia

- Rod-shaped
- Gram positive anaerobic
- ➤ spore-forming
- Diagnosis
- Clinical picture
- Gram stain



- Toxin detection by serological techniques
- Cycloserine-Cefoxitin Fructose Agar CCFA

is recommended as a selective and differential medium for the primary isolation of *C. difficile* from fecal specimens.

Diagnosis of C. difficile infection

Routine Laboratory Diagnosis of CDI

Diagnosis of *C. difficile* infection Culture

- Colonies of C. difficile bacteria after 24-48 hours growth on Cycloserine-Cefoxitin Fructose Agar – CCFA.
- Results: Clostridium difficile will appear as flat to low umbonate, yellow colonies with a ground glass-like appearance and a slightly filamentous edge.

