
Jaundice

Definition of Jaundice

- Also called icterus
- A yellowish straining of the skin, conjunctiva, base of tongue palms and soles with bile pigments which are increased in plasma
- Can be seen on examination at serum bilirubin levels 27-35 μ mol/l (1.5 2 mg/dl)
- Pathophysiologic classification of Jaundice
 - Hemolytic Jaundice
 - Hepatic Jaundice
 - Obstructive Jaundice (cholestasis)
 - Genetic based jaundice
- Jaundice classification (according to type of bilirubin)
- Unconjugated hyperbilirubinemia: when direct bilirubin level is less than 15% of total serum bilirubin.
- Conjugated hyperbilirubinemia: when direct bilirubin level is greater than 15%



Prehepatic (hemolytic, unconjugated) jaundice

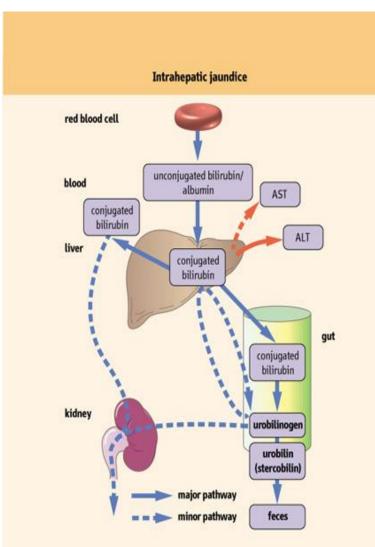
 Results from excess production of bilirubin (beyond the ability of liver to conjugate) following hemolysis

Causes

- Increased production of bilirubin due to extravascular hemolysis, extravasation of blood into tissues, intravascular hemolysis and errors in production of red blood cells
- Pyruvate kinase and glucose
 6-phosphate dehydrogenase
 deficiency
- Impaired hepatic bilirubin uptake as in CHF
- Ineffective erythropoiesis

- Impaired bilirubin conjugation Gilbert's and Crigler-Najarr syndromes

Hyperthyroidism


Liver diseases as in chronic hepatitis, cirrhosis, Wilson's disease

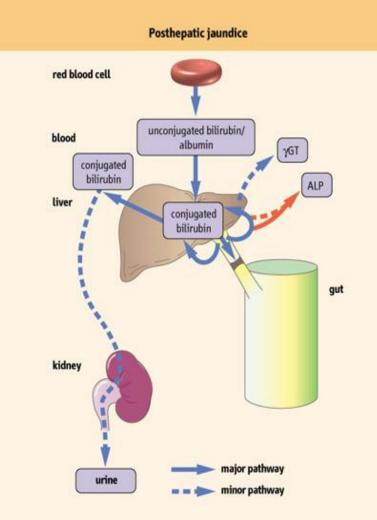
Laboratory findings

- UB \uparrow without bilirubinuria (50-150 µmole/l)
- Hemolytic anemia
- Hemoglobinuria (in acute intravascular hemolysis)
- Reticulocyte counts (10-30 %; normal range <1 %)
- Urinary changes:
 - Bilirubin: absent
 - Urobilinogen: increased or normal
- Faecal changes: stercobilinogen: normal

Intrahepatic (conjugated) jaundice

- Due to a disease affecting hepatic tissues either congenital or acquired diffuse hepatocellular injury
- Impaired uptake, conjugation, or secretion of bilirubin
- Reflects a generalized liver (hepatocyte) dysfunction
- In this case, hyperbilirubinemia is usually accompanied by other abnormalities in biochemical markers of liver function

<u>Causes</u>


- Impaired or absent hepatic conjugation of bilirubin
 - Gilbert's and Grigler-Najjar
- Acquired disorders
 - Hepatocellular necrosis
 - Hepatitis, Cirrhosis, Drug-related
 - Sepsis
 - Infiltrative: TB, amyloid, lymphoma
 - Toxins
 - Hepatic crisis in sickle cell disease

Laboratory findings

- liver function tests are abnormal
- Both CB and UCB \uparrow
- Bilirubinuria († 50-250 µmole/l)
- Urobilinogen: normal or reduced
- Stercobilinogen: normal or reduced

Posthepatic (Obstructive) jaundice

- Caused by intra- and extra hepatic obstruction of bile ducts
- Plasma bilirubin is conjugated, and other biliary metabolites, such as bile acids accumulate in the plasma
- Characterized by pale colored stools (absence of fecal bilirubin or urobilin), and dark urine (increased conjugated bilirubin)
- In a complete obstruction, urobilin is absent from the urine

<u>Causes</u> Intrahepatic

- Blockage of Bile Canaliculi
- Dubin-Johnson syndrome
- Hepatitis-viral, chemical
- Infiltrative tumors

Extrahepatic

- Obstructive of bile ducts by tumors, CBD or CHD stone and Stenosis
- Acute and chronic pancreatitis
- Parasitic infections as Ascaris lumbricoides and liver flukes

Laboratory Findings

- Serum Bilirubin↑ (100-500 µmole/l)
- Fecal urobilinogen \downarrow (incomplete obstruction) or absent in (complete obstruction)
- Urobilinogenuria is absent in complete obstructive jaundice
- Bilirubinuria 1

- Cholesterol 1

- Urinary changes:
- 1- Bilirubin: increased 2- Urobilinogen: reduced or absent
- Faecal changes: stercobilinogen: reduced or absent

The causes of jaundice

Туре	Cause	Clinical example	Frequency
Prehepatic	hemolysis	autoimmune abnormal hemoglobin	uncommon depends on region
intrahepatic	infection	hepatitis A, B, C	common/very common
	chemical/drug	acetaminophen alcohol	common common
	genetic errors: bilirubin metabolism	Gilbert's syndrome Crigler–Najjar syndrome Dubin–Johnson syndrome Rotor's syndrome	1 in 20 very rare very rare very rare
	genetic errors: specific proteins	Wilson's disease α_1 antitrypsin	1 in 200 000 1 in 1000 with genotype
	autoimmune	chronic active hepatitis	uncommon/ rare
	neonatal	physiologic	very common
Posthepatic	intrahepatic bile ducts	drugs primary bilary cirrhosis cholangitis	common uncommon common
	extrahepatic bile ducts	gall stones pancreatic tumor cholangiocarcinoma	very common uncommon rare

© Fleshandbones.com Baynes: Medical Biochemistry

	Pre-hepatic	Hepatic	Post-hepatic
Urine	No Bilirubin Urobilinogen ↑	There is bilirubin Normal urobilinogen	There is bilirubin Urobilinogen is absent
Faeces	Dark	Pale	Pale
Blood	 ↑Reticulocyte count ↑ Unconjugated bilirubin (up to 100µmol/L) Normal ALP and γ GT Normal AST and ALT PT Normal 	 Normal reticulocyte count ↑ Bilirubin – mixed conjugated & unconjugated ↑ ALP and γ GT ↑ AST and ALT ↑ PT – not correctable with Vit K 	 Normal reticulocyte count ↑ Bilirubin (up to 1000µmol/L) – conjugated ↑ ALP and γ GT Normal AST and ALT ↑ PT – correctable with Vit K

Neonatal Jaundice

- Common, particularly in premature infants
- -Transient (resolves in the first 10 days), due to immaturity of the enzymes involved in bilirubin conjugation
- High levels of unconjugated bilirubin are toxic to the newborn due to its hydrophobicity it can cross the blood-brain barrier and cause a type of mental retardation known as kernicterus
- If bilirubin levels are judged to be too high, then phototherapy with UV light is used to convert it to a water soluble, non-toxic form
- If necessary, exchange blood transfusion is used to remove excess bilirubin
- Phenobarbital is oftentimes administered to Mom prior to an induced labor of a premature infant crosses the placenta and induces the synthesis of UDP glucuronyl transferase
- Jaundice within the first 24 hrs of life or which takes longer then 10 days to resolve is usually pathological and needs to be further investigated

Gilbert's syndrome

- Benign liver disorder considered the most common hereditary cause of increased bilirubin.
- A major characteristic is jaundice, caused by elevated levels of unconjugated bilirubin in the bloodstream.
- -The cause of this hyperbilirubinemia is the reduced activity of the glucuronyl transferase, which conjugates bilirubin and some other lipophilic molecules.
- It is caused by a 70%-80% reduction in the glucuronidation activity of the enzyme UDP-glucuronosyltransferase 1A1.
- $\frac{1}{2}$ of the affected individuals inherited it
- Males more frequently affected than females
- Onset of symptoms in teens, early 20's or 30's
- Can be treated with small doses of phenobarbital to stimulate UDP glucuronyl transferase activity

<u>Crigler - Najjar syndrome, type I</u>

- A very rare disease (estimated at 0.6 1.0 per million live births), and consanguinity increases its risk.
- Inheritance is autosomal recessive.
- -Type 1 is characterized by a serum bilirubin usually above 345 µmol/L (310 755)
- No UGT1A1 (UDP glucuronosyltransferase 1 family, polypeptide A1) expression can be detected in the hepatic tissue.
- -These children died of kernicterus (=bilirubin encephalopathy), or survived until early adulthood with clear neurological impairment.

Today, therapy includes:

- exchange transfusions in the immediate neonatal period,
- 12 hours/day phototherapy
- heme oxygenase inhibitors to reduce effect of hyperbilirubinemia
- oral calcium phosphate and -carbonate to form complexes with bilirubin in the gut,
- liver transplantation prior to the onset of brain damage.

<u>Crigler-Najjar syndrome, type II</u>

Differs from type I in several aspects:

- 1- bilirubin levels are generally below 345 μ mol/L.
- 2- Some cases are only detected later in life because of lower serum bilirubin, kernicterus is rare in type II.
- 3- bile is pigmented, instead of pale in type I or dark as normal.
- 4- UGT1A1 is present at reduced but detectable levels (typically <10% of normal), because of single base pair mutations
- 5- therefore, treatment with phenobarbital is effective, generally with a decrease of at least 25% in serum bilirubin.
- The inheritance pattern of Crigler Najjar syndrome type II has been difficult to determine, but is generally considered to be autosomal recessive.

Dubin-Johnson and Rotor's syndromes

- Characterized by impaired biliary secretion of conjugated bilirubin
- Present with a conjugated hyperbilirubinemia that is usually mild