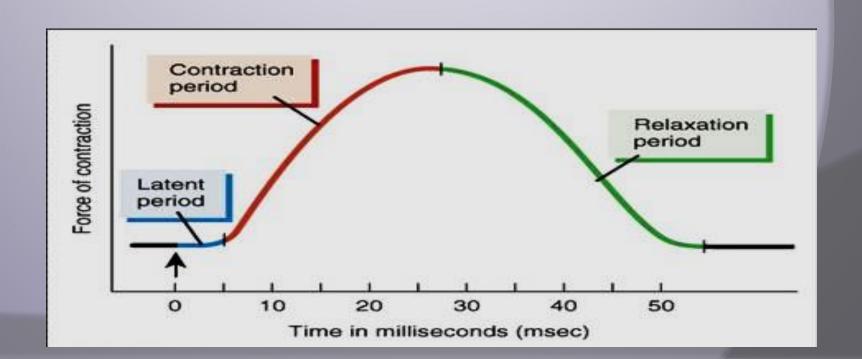


4- MUSCLE PHYSIOLOGY



Prof. Sherif W. Mansour
Physiology dpt., Mutah School of medicine
2024

The simple muscle twitch

Definition: It is the response of the muscle to a single maximal stimulus and consists of:

- 1) Latent period: -It is the time between time of stimulus & response.
- -About 0.01 second duration. Due to: 1- conduction of impulse in nerve 2- production of MEP potential. 3-conduction of impulse in the muscle. 4- contraction and 5- the time of recording.
- 2) Contraction period: during it the muscle contracts either isometrically or isotonically.(0.04 sec.)
- 3) **Relaxation period:** the muscle relaxed (= 0.05 sec. In isotonic relaxation).

Factors affecting the simple muscle twitch:

1-Type of muscle: there are 2 types of muscle fibers:

Red muscle fibers	White (pale) muscle fibers	
1- Of type I & slow fibers.	- of type II fibers & fast fiber	
2- Rich in myoglobin (red)	- poor in myoglobin (pale)	
3-fibres are small in size	- the fibers are large in size	
4-supplied by small, slow	- supplied by large rapid nerve	
nerve	- less blood supply	
5- More blood supply	-contains few number of	
6-Contain large number of	mitochondria and depend on	
mitochondria and depend on	anaerobic metabolism	
aerobic metabolism		
7-Respond slowly but with	-it responds rapidly but with	
long duration	short duration	
8- Not early fatigued	- it early fatigued	
9-Adapted for prolonged	-Adapted for rapid, fine, skilled	
muscle activity (Static	Movement (Phasic function)	
function)		
10- e.g antigravity muscles to	-e.g. extraocular muscle	
maintain body posture.		

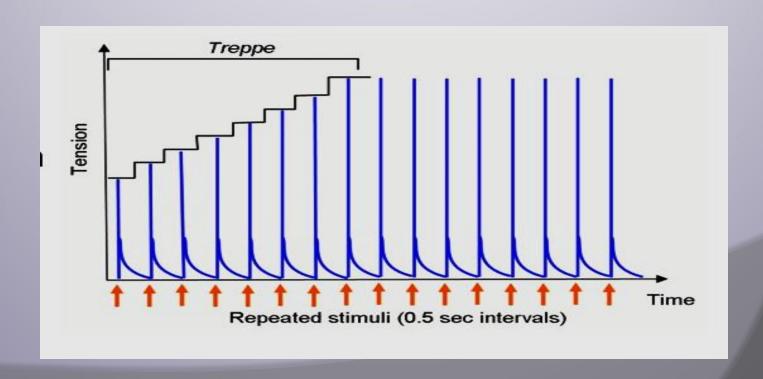
N.B.: most muscle contain both types but one is predominant.

2- Temperature:

Warming of the muscle as in muscular exercise leads to stronger and rapid contraction by acceleration of the chemical reactions and decrease the muscle viscosity.

But overheating (> 45° C) \rightarrow heat rigor (stiffness).

3- Initial length:


The strength of contraction (in isotonic contraction) and the developed tension (in isometric contraction) are directly proportional to the initial length of the muscle fibre up to limit (**Starling's law**).

4- Fatigue:

- •Definition:- It is the gradual decrease in the muscle contraction and prolonged duration of all phases of the SMT, especially relaxation due to repeated and strong stimulation of the muscle. The effect: decrease strength and prolonged duration of contraction and incomplete or absent relaxation
- •The cause of **fatigue**: In case of **indirect** stimulation (via stimulation of its motor nerve) is the gradual exhaustion of Ach at the MEP.
- -Also **direct** stimulation of the muscle may lead to fatigue due to exhaustion of energy sources (ATP) or accumulation of metabolites.
- In living muscle (after exercise), **fatigue** is caused by:
 - 1-Decrease blood supply to the muscle. 2-Decrease energy sources.
 - 3-Accumulation of metabolites which depress the brain and spinal cord (central effect).
- Contracture may occur with fatigue due to decrease in ATP required for separation between the thin and thick filaments and muscle relaxation.

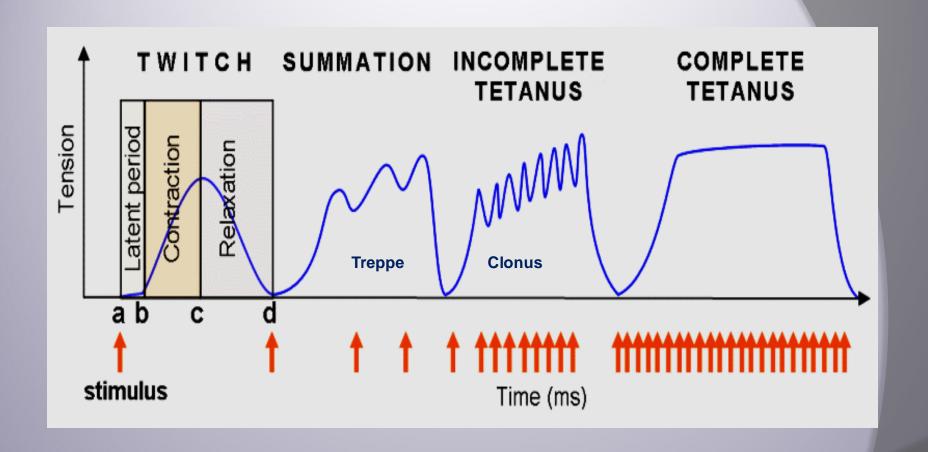
5- Stair-case (Treppe) phenomenon:

- -It occurs in the skeletal and cardiac muscle.
- -It is a gradual increase in muscle contraction until plateau.
- -This occurs by application of series of maximal stimuli just after relaxation period of each muscle twitch.
- -This is due to: 1- accumulation of Ca++ intracellular.
 - 2- ↑ temperature of the muscle.
- 3- \downarrow K+ & \uparrow Na+ intra-cellulary \rightarrow \uparrow Ca+2 release from sarcoplasmic reticulum $\rightarrow \uparrow$ contraction.

Summation of muscle contractions

Since the contraction phase in the skeletal muscle starts with the relative refractory period, the muscle respond to another stimulus during either cont. or relaxation → summation of contraction.

(a) Effect of two successive stimuli:

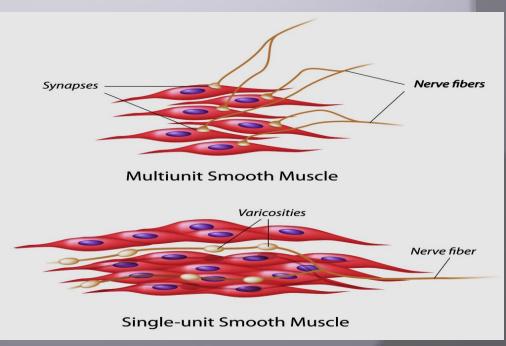

According to frequency of stimulation:

If the 2^{nd} stimulus falls in relation to preceding one:

- 1- During the **latent period** \rightarrow no response (during ARP).
- 2- During the **contraction period** \rightarrow more strong contract.
- 3- During the **relaxation period** \rightarrow 2 peaks contraction.
- 4- Just **after the relaxation period**→ stair-case phenomenon.
- 5- After relaxation \rightarrow normal second contraction.

(b) Effect of multiple successive stimuli:

- 1- If the frequency is low \rightarrow separate twitches with **Stair case** phenomenon.
- 2- If the frequency increases and stimuli falls during relaxation phase of preceding twitch \rightarrow Clonus (incomplete tetanus).
- 3- If the frequency increases more and stimuli falls during contraction phase \rightarrow sustained contraction (complete tetanus).
- N.B.: Cooling, fatigue & anticholinesterase (Eserine) change **clonus into complete tetanus**. However, warmness and rest cause the reverse.

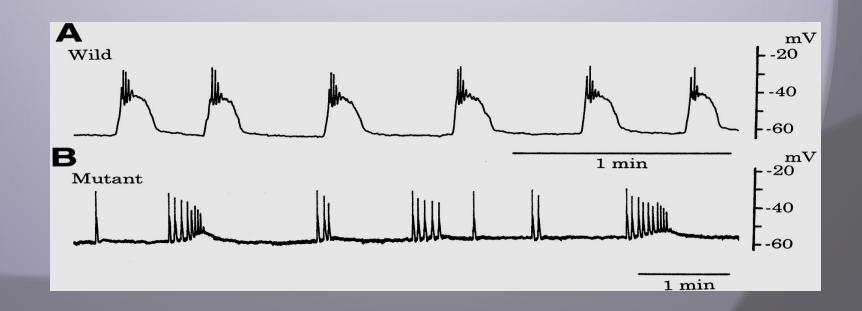

Smooth Muscle

•Site: it presents in wall of most viscera, bl. vessels, some glands, intraocular muscles and erector pilae ms. So, it controls the involuntary activities.

•Structure:

- Smooth muscle fibers are spindle-shaped, non striated (plain) cells with central long nuclei.
- Fiber's length is 20-500 microns and diameter 2-5 microns.
- S.M. contains more actin filaments which attached to each other and to dense bodies.
- S.M contain **calmodulin** instead of troponin-tropomyosin.
- S.M contain less mitochondria and endoplasmic reticulum.
- -S.M innervated by autonomic nervous system.

Types of smooth muscles


•S.M of two types:

-S.M has no motor end plate but at nerve endings (sympathetic or parasympathetic) there are special nodes (varicosities) via it neuromuscular transmission occurs → depolarization followed by contraction or hyperpolarization followed by relaxation according to the type of chemical transmitter.

Multi-unit S.M.	Single unit S.M (unitary)	
-Separate fibers without	-Aggregated fibers attached by	
connection. (Except via the	gap junctions facilitate	
chemical transmitters).	conduction of action potential	
	(functional syncytium).	
- One nerve for each fiber	-one nerve for many fibers.	
- Not obey all or none law	-Obey all or non law	
-Sensitive to chemical	- less sensitive.	
transmitter		
-Rare spontaneous cont. but	-Contract spontaneously	
controlled by nerve impulses.		
-Not respond to stretch	- Respond to stretch	
-e.g iris, wall of bl. vs.,	- e.g wall of viscera as uterus,	
pilomotor muscle&	GIT, ureter,	
ciliary muscle		

Excitability of S.M

- •RMP: is **unstable** and about -40 to -60 mvolt. with slow sine waves.
- •Action potential of **four** types:
- **a-Spike potential** as in sk. ms with duration of 50 msec. Present in the single unit S.M fibers.
- **b-Action potential with prolonged plateau** (hundreds of m.sec) due to delayed repolarization as in uterus (similar to cardiac potential).
- **c-Spike pot. with serrations** as in small intestine.
- **d-Pacemaker potential** (slow wave potential): It occurs due to rhythmical activity of Na+-K+ pump. When the wave reach the firing level (-35 mv) \rightarrow action potentials which spread over the muscle. This type of potential initiates rhythmical contraction of GIT (as in the automatic cardiac fibers).
- Ionic base of action potential: may due to Na+ influx or Ca++ influx or both.

Contractility of S.M.

Excitation contraction coupling:

- **-Contraction**: Extracellular Ca++ influx or intracellular Ca++ release from the sarcoplasmic reticulum $\rightarrow\uparrow$ intracellular Ca++ which combine with calmodulin \rightarrow activate myosin light chain kinase enzyme \rightarrow phosphorylation of the light chain of myosin \rightarrow binding of actin & myosin \rightarrow shortening (contraction).
- -**Relaxation**: \downarrow intra-celular Ca++ (by Ca++ pump) \rightarrow stimulate myosin phosphatase enzyme \rightarrow removal of phosphate from light chain of myosin \rightarrow stop contraction \rightarrow relaxation.

-Characters of S.M. contractility:

- 1-Spontaneous contraction but under nervous regulation.
- 2-Slow cycling of cross bridges
- 3-Slow onset of contraction and relaxation.
- 4-Energy and O2 consumption is **low** and depends mainly on anaerobic glycolysis. So it is not easily fatigued.
- 5-SM has great ability to shorten as far greater percentage of its length.
- 6-Its contraction is **sluggish** and excitation / contraction coupling is **very slow** also Ca++ pump is slow so contraction is maintained than in skeletal muscle.
- **7-Latch mechanism**, as prolonged tonic contraction needs less energy, less nervous or chemical stimulation than initial activity. So this **delays fatigue**.
- 8- Stress relaxation (plasticity) in which if SM is slowly stretched → increased tension at first then the tension gradually decreases inspite of continuous stretch (e.g., the urinary bladder can receive large volumes of urine without marked increase in wall tension).
- 9-Visceral SM shows: **Tone** = continuous mild contraction

Rhythm = irregular cont. due to repetitive discharge of spike potential.

Factors affecting excitability & contractility

	↑Excitability → contraction	\downarrow Excitability \rightarrow relaxation.
-Motor neurons -Temperature -Stretch -pH+ -Osm. Pressure -Ions -Autonomic drugs -Hormones	Parasympathetic Cooling Rapid moderate stretch Alkalinity Low ↓ Ca ⁺⁺ &↑ K ⁺ Parasympathomimetics Vasopressin, Oxytocin and Estrogen.	Sympathetic Warmth Severe stretch Acidity High ↑Ca ⁺⁺ &↓ K ⁺ Sympathomimetics Catecholamines, Progestrone

Thank You

