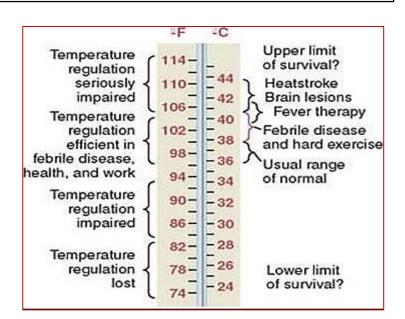

MSS MODULE PHYSIOLOGY LECTURE 1 THERMOREGULATION I

BY
Dr. Fatma Farrag Ali
Associate Professor of Medical Physiology
2023-2024



NORMAL BODY TEMPERATURE

Average body temperature in adults: 37 °C (36.5-37.3°C)

Measured by:

- 1. Oral root.
- 2. Axillary root (0.5 °C less than oral).
- 3. Rectal root (0.5 °C more than oral).

BODY TEMPERATURE

1. Central or Core temperature (Rectal temperature):

- 0.5 °C more than oral temperature.
- It is relatively constant.
- It represents the temperature of deep viscera as brain, heart, lungs and abdominal organs. These body structures produce 75% of total resting heat.

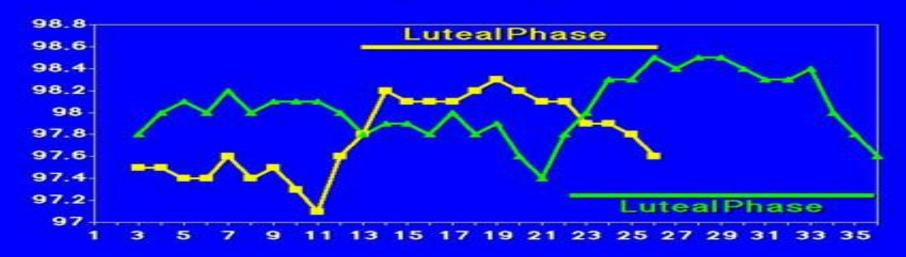
2. Skin temperature (Shell temperature):

- It normally varies with the environmental temperature (follow it).
- In comfortable environmental temperature, it averages 33°C.
- Higher in skin covering organs of high resting heat as head, chest, abdomen (34 °C).
- Lower in extremities as hands and feet (28 °C).

FACTORS AFFECTING BODY (CORE)TEMPERATURE

1) Diurnal rhythm:

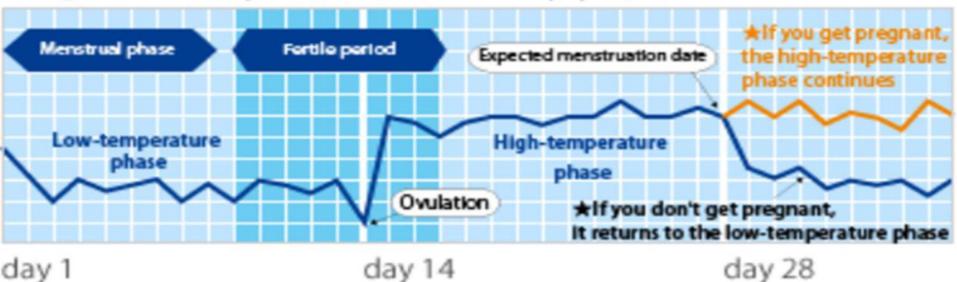
- Normally, the human core temperature shows regular cyclic changes during the 24 hours (= circadian fluctuation).
- The body temperature is lowest in the early morning (at 6 am) and gradually ↑ to a maximum in late afternoon & evening (difference is around 0.5-0.7 °C).


2) Age:

- The body temperature is higher in young children than in adults. In young children, temperature regulation is less fine than in adults and they may have a temperature of about 0.5°C above that of normal adults.
- Premature babies have immature thermoregulatory systems, hence their temperature varies with that of the environment. They must therefore be put in incubators.

3) Sex:

- Body temperature is more in males than females.
- In adult females, body temperature varies with the menstrual cycle:
- A)The temperature rises about **0.5** °C at the time of **ovulation** (14th day of the cycle), and is maintained at that level till the end of the cycle due to the **thermogenic effect of progesterone**.
- B)Body temperature decreases before menstruation (premenstrual drop) till ovulation of the next cycle.
- C) If **pregnancy** occurred, **no drop** of body temperature occurs due to the thermogenic effect of progesterone.
- D) In **an-ovulatory cycles**, the basal body temperature is **monophasic** with no drop around the 14th day of the cycle.


Basal Body Temperature

LutealPhase Remains Constant at 14 days

day 1

Changes in basal body temperature (for a 28-day cycle)

4) Site of measurement:

The rectal temperature is higher than oral temperature by about 0.5 °C. While, the axillary is lower than oral temperature by about 0.5 °C.

5) Emotions:

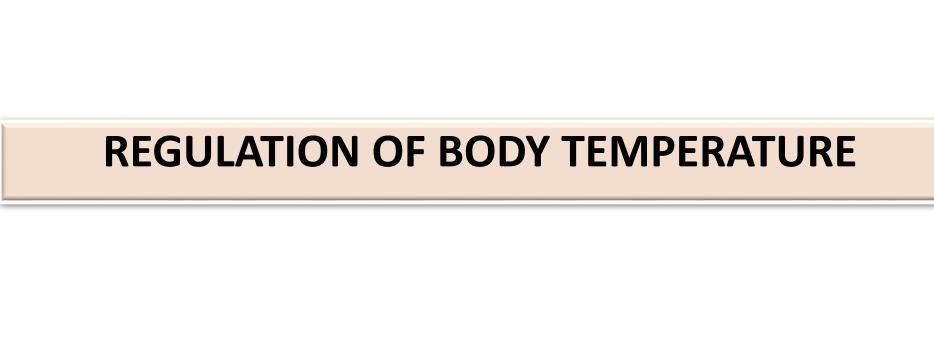
The body temperature rises during emotional excitement due to increase in both the muscle tone and sympathetic activity.

6) Activity:

The body temperature markedly increases during muscular exercise (1-3°C); core temperature may reach 40°C.

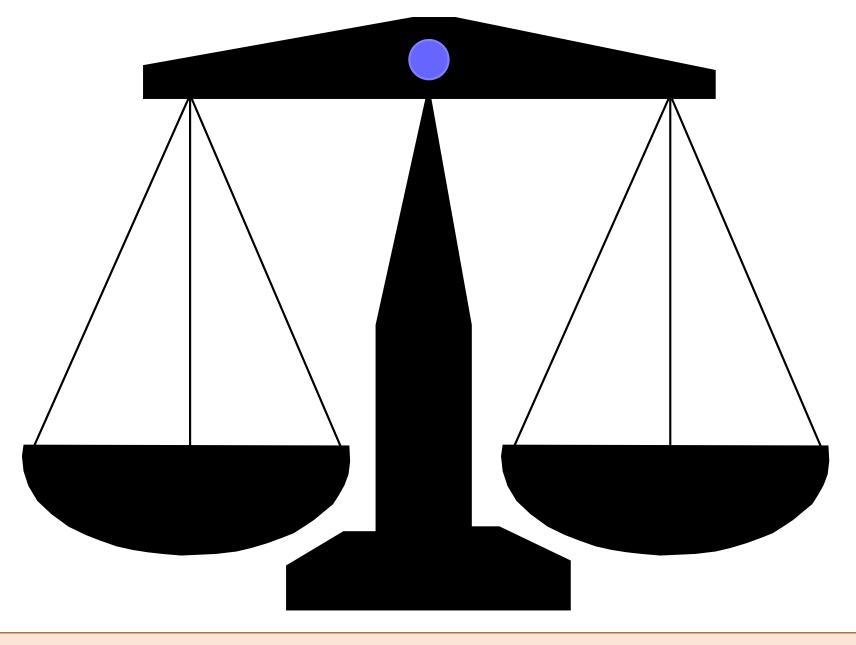
7) Environmental (atmospheric) temperature:

The body temperature tends to increase at excessively high environmental temperature and to decrease at excessively low environmental temperature.


8) Endocrinal factors:

The body temperature is elevated in hyperthyroidism and lowered in hypothyroidism (0.5 °C).

9) Individual variations:


Some normal adult persons have an average body temperature that is higher than the normal range without obvious causes (= constitutional hyperthermia).

10) The body temperature is increased in febrile (= fever-producing) diseases.

HEAT BALANCE

- This is the balance between heat production (gain) and heat loss in order to keep body temperature constant.
- The body temperature is determined by the heat concentration in the body and both are determined by this balance.
- When heat production exceeds heat loss, the heat concentration in the body 个个 and body temperature rises.
- When heat loss exceeds heat production, the heat concentration in body $\downarrow \downarrow$ and body temperature drops.

HEAT PRODUCTION

37°C

HEAT LOSS

HEAT PRODUCTION (GAIN)

Heat production in body takes place by:

- 1. The basal metabolic activities (BMR) of vital organs as the brain, heart, lungs, kidneys...etc. (which produce heat all the time).
- 2. Muscular activity.
- 3. Food intake (which produces heat by the specific dynamic action (SDA), particularly proteins).
- 4. The metabolic effects of **hormones** (especially **catecholamines and thyroid hormones**). They stimulate the metabolic processes in the body leading to heat production.
- 5. Brown fat:
- This is a special type of fat present between and around the scapula.
- It has a high rate of metabolism
- It is found in infants but not in adults.
- Its cells contain large numbers of special mitochondria (uncoupling of oxidative phosphorylation) and are richly supplied by sympathetic nerve fibers.

HEAT LOSS

- The skin and subcutaneous tissues (specially its fat content) constitute an insulator system that insulates the deep parts of the body from the skin surface. However, heat can still be transferred from deep tissues to the skin by the blood.
- The blood carries the internal heat of the body areas to the surface of the body and this can be varied by changing the cutaneous blood flow (VD ↑↑heat transfer to skin and vice versa).

Heat exchange between the skin and surrounding environment occurs by:

A. Non-evaporative Mechanisms:

- 1. Radiation.
- 2. Conduction.
- 3. Convection.

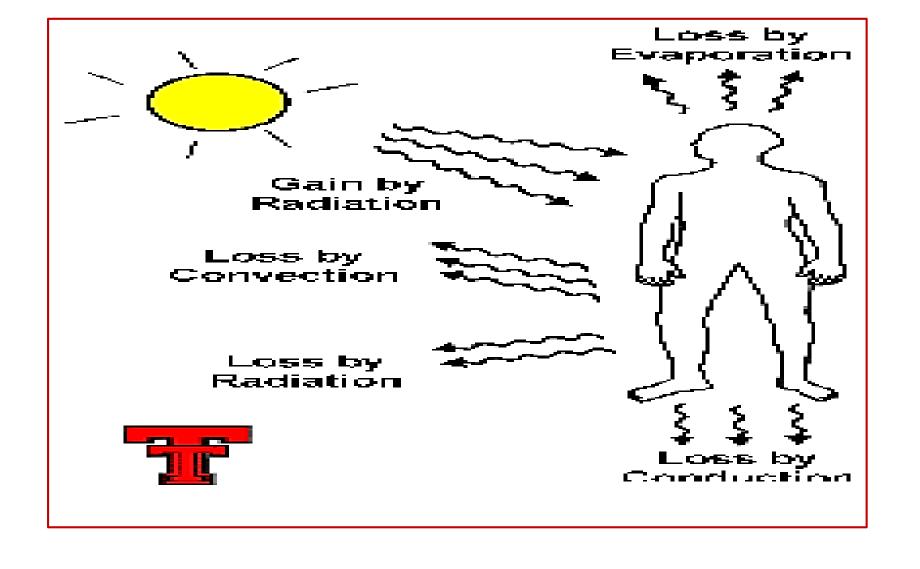
N.B. Heat loss from body by these mechanisms occurs ONLY when skin temperature is higher than that of the environment.

B. Evaporative Mechanisms:

- 1. Insensible perspiration.
- 2. Sweating.

A. Non-evaporative Heat Loss

1. Radiation (R):


- This is the heat transfer between objects that are not in contact with each other.
- Heat is radiated **from warm objects to cooler ones** (the sun warms the earth by heat transferred by radiation).
- The greater the thermal gradient (the difference between the temperature of the objects), the more will be the amount of radiation and vice versa.
- It is the main method of heat loss (about 60 %-70 %) at low environmental temperature (21 °C).

2. Conduction (CD):

- This is the heat transfer between objects that are in direct contact with each other.
- Its amount is also proportionate to the thermal gradient between objects.
- Normally, heat conduction from the body to objects (e.g. a chair or bed) is little (about 3 %). However, heat conduction to air is greater specially in presence of air currents and far greater to water (since the conductivity of water to heat is more than that of air).
- It is less important as method of heat loss, but we can use it in immersing a feverish subject in cold water for reduction of body temperature in fever.

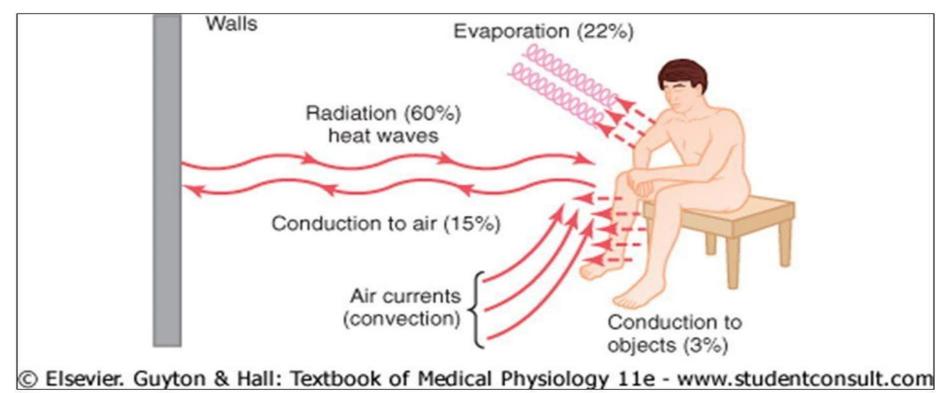
3. Convection (CV):

- It is removal of heat from body by convection air currents.
- It only helps heat loss by conduction (since heat must be first conducted to air then carried away by convection currents).
- When external temperature is less than that of the body, air in contact with the skin gets warmed and rises up transferring heat from the body. Cooler air from the environment replaces the warmed air and the process is repeated leading to increased heat loss from the body.
- Forced convection occurs if there are air currents as by using fans → → more heat loss.

N.B. ALL NON-EVAPORATIVE MECHANISMS OF HEAT LOSS DEPEND ON THE TEMPERATURE GRADIENT BETWEEN THE BODY SURFACE AND THE SURROUNDING ENVIRONMENT.

B. Evaporative Heat Loss

There are 2 mechanisms for heat loss by evaporation:

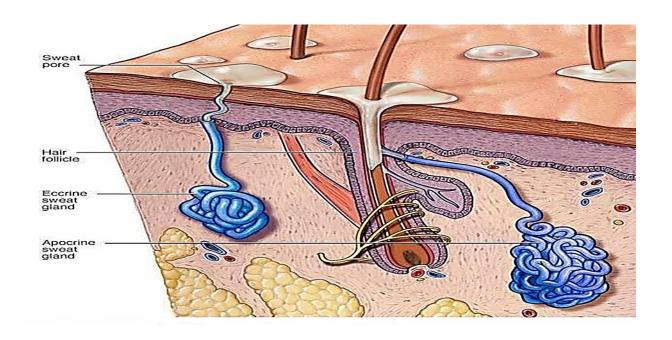

- 1. Insensible Perspiration:
- Means water evaporation from the respiratory passages and from the skin surfaces other than sweating.
- At rest about **25-50 ml** of water are evaporated per hour (= about 600-1200 ml /day) through this mechanism $\rightarrow \rightarrow \rightarrow$ removing about **15-30** C/hour $\rightarrow \rightarrow \rightarrow$ since vaporization of I ml of water causes loss of 0.6 C.
- It is important in panting animals having no sweat glands as dogs and cats.

2. Sweating:

- The cooling effect of sweat depends on its evaporation which occurs only in dry climates.
- The rate of sweat evaporation is inversely proportional to the humidity of the atmosphere (The greater the humidity, the less will be sweat evaporation and vice versa). Therefore the most annoying
- weather is the hot and humid.
 In humid climates, sweat only drips from the body but is not evaporated (so a general sensation of hotness is felt on humid days).
- Sweat secretion **starts** at temperature between **32-34**°C.
- from the body is through sweat evaporation.
 During muscular exercise in a hot environment, sweat secretion may reach 1600 ml/hour (or more) which leads to a heat loss of more than

If the environmental temperature is >34°C the only way of heat loss

900 C/hour (1600x 0.6).
As in case of heat loss by conduction, heat loss by sweat evaporation is also helped by convection.


Mechanisms of heat loss from the body.

Sweat Glands

There are two types of sweat glands:

- Eccrine sweat glands
- Apocrine sweat glands

Sweating is a function of **eccrine sweat glands**, which are present in the skin and widely distributed on body surface.

	ECCRINE SWEAT GLAND	APOCRINE SWEAT GLAND
Distribution	All over the skin surface	In well defined areas (axilla, pubic region, areola of breast)
Relation to hair follicles	Never connected to hair follicles	connected to hair follicles
Secretion	Produce a watery secretion	Produce a viscid secretion
Temperature regulation	Help in temperature regulation	No role in temperature regulation
Time of activation	Activated since birth	Not activated until puberty
Innervation	Sympathetic cholinergic nerves	Sympathetic adrenergic nerves
Structure	Spiralled duct Straight dermal duct Coiled dermal duct Coiled gland	Sebaceous gland Straight duct Apocrine gland Georetory portions

Sweat

Composition:

It is isotonic with blood plasma when first secreted. Then, it becomes hypotonic as it passes through the gland ducts due to reabsorption of NaCl and water as controlled by aldosterone.

Center:

Sweat secretion center is located in the anterior part of the hypothalamus.

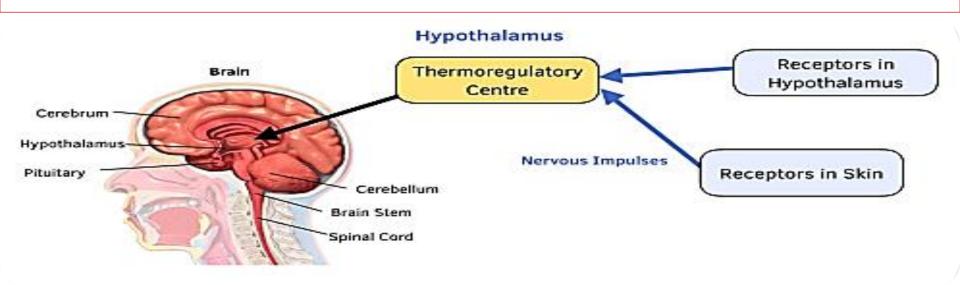
Control:

Sweating is stimulated by sympathetic cholinergic fibers.

Amount:

Up to 700 ml/hour in normal person. May reach up to 2 L/hour in acclimatization (when exposed to a hot weather for 1-6 weeks).

Function:


- Sweat is produced as a thermoregulatory response to heat either from:
- a) Rise in environmental temperature ,or
- b) Arise in body temperature as during exercise.
- The cooling effect of sweat depends on its evaporation which is inversely proportional to the humidity of the atmosphere.

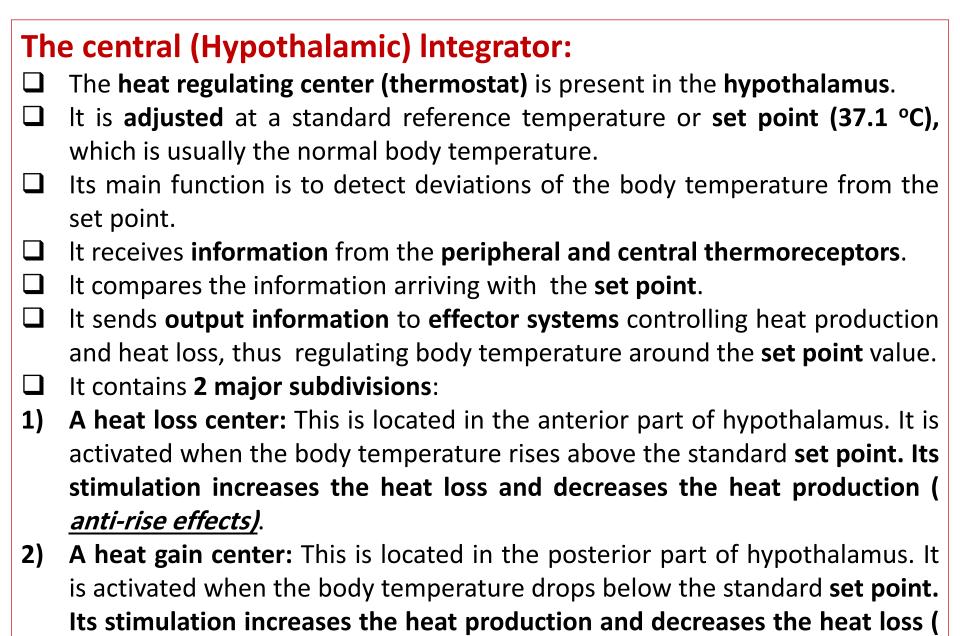
THE THERMOREGULATORY SYSTEM

- The thermoregulatory system is a highly-developed system that restores the body temperature back to its normal level whenever it is disturbed.
- The core body temperature is kept constant while the skin temperature varies markedly with variation of environmental temperature.

It consists of:

- ✓ Thermoreceptors (sensory receptors).
- ✓ Afferent neurons to the CNS.
- ✓ Control center for regulation in hypothalamus.
- ✓ Efferent neurons from the CNS.
- ✓ Effector organs to adjust heat production and loss.

The Thermoreceptors:


- ✓ These receptors detect changes in temperature then discharge to the hypothalamic control center.
- ✓ They include:

1) Peripheral thermoreceptors:

- They are located in the **skin** and record its temperature.
- They include:
- 1. Warm receptors (Ruffini Corpuscles).
- 2. Cold receptors (Krause's Corpuscles).
- They discharge their impulses via the lateral spinothalamic tract to the thalamus and to the hypothalamus through a collateral branch.

2) Central thermoreceptors:

- They are present in the hypothalamus (preoptic area at anterior part of hypothalamus).
- They are sensitive to local core (Brain) temperature.

anti-drop effects).

Effector organs involved in temperature regulation:

- **1. Skin**; all skin structures sharing in temperature regulation are controlled by sympathetic nerve fibers, they include;
- a) Cutaneous blood vessels: receive sympathetic noradrenergic nerve fibers.
 ◆ Sympathetic Stimulation → VC.
- ↓ Sympathetic Stimulation → VD.
- Through such vasomotor effects, the skin temp can be changed and this largely determines the amounts of heat loss or gain by (R, CD & CV).
- b) Sweat glands: receive sympathetic cholinergic nerve fibers.
- Sweat evaporation markedly decreases body temperature.

 c) Piloerector muscles: receive sympathetic noradrenergic nerve fibers. They
- contract in cold weather leading to erection of skin hairs. The air trapped between hairs constitute an insulating layer around the body which prevents heat loss.

 2. Skeletal muscles;
- They are supplied by **somatic nerves**, and their contraction greatly **^heat production**.
- **3. Endocrine glands;** especially **adrenal medulla and thyroid gland**; their hormones markedly stimulate metabolic processes leading to \uparrow heat production. Therefore, the secretion of catecholamines and thyroid hormones increases in cold climates and decreases on exposure to heat.

THANK YOU

THANK YOU

