

# Chapter 12

# **Chemical Kinetics**



### **Reaction Rate**

 Change in concentration of a reactant or product per unit time.

• 
$$Rate = \frac{[A]_{t2} - [A]_{t1}}{t_2 - t_1} = \frac{\Delta[A]}{\Delta t}$$



### The Decomposition of Nitrogen Dioxide

Table 12.1Concentrations of Reactant and Products<br/>as a Function of Time for the Reaction<br/> $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$  (at  $300^\circ$ C)

|            | C               | Concentration (mol/L) |                       |  |  |
|------------|-----------------|-----------------------|-----------------------|--|--|
| Time (±1s) | NO <sub>2</sub> | NO                    | <b>O</b> <sub>2</sub> |  |  |
| 0          | 0.0100          | 0                     | 0                     |  |  |
| 50         | 0.0079          | 0.0021                | 0.0011                |  |  |
| 100        | 0.0065          | 0.0035                | 0.0018                |  |  |
| 150        | 0.0055          | 0.0045                | 0.0023                |  |  |
| 200        | 0.0048          | 0.0052                | 0.0026                |  |  |
| 250        | 0.0043          | 0.0057                | 0.0029                |  |  |
| 300        | 0.0038          | 0.0062                | 0.0031                |  |  |
| 350        | 0.0034          | 0.0066                | 0.0033                |  |  |
| 400        | 0.0031          | 0.0069                | 0.0035                |  |  |

Cengage Learning. All Rights Reserved.



### The Decomposition of Nitrogen Dioxide





### Instantaneous Rate

 Value of the rate at a particular instant of time can be obtained by computing the slope of a line tangent to the rate curve at that point.



#### Rate Law

- Shows how the rate depends on the concentrations of reactants.
- For the decomposition of nitrogen dioxide:

 $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$ 

Rate =  $k[NO_2]^n$ :

- k = rate constant ; n = order of the reactant
- The rate in terms of the concentrations of reactants and products:

• 
$$rate = -\frac{1}{2} \frac{\Delta [NO_2]}{\Delta t} = \frac{1}{2} \frac{\Delta [NO]}{\Delta t} = \frac{\Delta [O_2]}{\Delta t}$$

• 
$$rate = -\frac{1}{2}\frac{d[NO_2]}{dt} = \frac{1}{2}\frac{d[NO]}{dt} = \frac{d[O_2]}{dt}$$

(instantaneous rate)



Rate Law

- Rate =  $k [NO_2]^n$
- The concentrations of the products <u>do not</u> appear in the rate law because the reaction rate is being studied under conditions where the reverse reaction does not contribute to the overall rate.



Rate Law

Rate =  $k [NO_2]^n$ 

The value of the exponent *n* must be determined <u>experimentally</u>; it cannot be written from the balanced equation.



Types of Rate Laws

 Differential Rate Law (rate law) – shows how the rate of a reaction depends on concentrations.

 Integrated Rate Law – shows how the concentrations of species in the reaction depend on time.



### Rate Laws: A Summary

- Reaction rates are studied under conditions were the reverse reaction is unimportant. So, the concentrations of the products are not part of the rate law equation.
- The differential and integrated rate laws for a given reaction are related in a well–defined way. Therefore, the experimental determination of either of the rate laws is sufficient.

# Section 12.3 Determining the Form of the Rate Law

# Method of Initial Rates

- Several experiments are carried out using different initial concentrations of each of the reactants where the initial rate is determined for each run.
- The results are then compared to see how the initial rate depends on the initial concentrations of each of the reactants.

Section 12.3 Determining the Form of the Rate Law

### **Overall Reaction Order**

- The sum of the exponents in the reaction rate equation.
  Rate = k [A]<sup>n</sup>[B]<sup>m</sup>
  - Overall reaction order = (n + m)
  - k = rate constant
  - [A] = concentration of reactant A
  - [B] = concentration of reactant B



First-Order:

• Consider the reaction:  $A \rightarrow products$ 

- $Rate = k[A]_i = \frac{d[A]}{dt}$  ("A" is a reactant, the power of [A] is one)
- Rearrange:  $\frac{d[A]}{[A]} = k dt$
- Integrate: [A] o to [A] and time t=0 to time t,

 $ln[A] = -kt + ln[A]_{o}$  (this is linear form of the rate law equation)

Plot of In[A] against t give a strait line with negative slope of -k and intercept of In[A]<sub>o</sub>

- [A] = concentration of A at time t
  - k = rate constant
  - t = time
- $[A]_{o}$  = initial concentration of A



# Plot of In[N<sub>2</sub>O<sub>5</sub>] vs Time

$$slope = -k = \frac{[-5-(-3)]}{400-100} = -0.0133$$
, so, k=0.0133

| $ln[N_2O_5]$ | Time (s) |
|--------------|----------|
| -2.303       | 0        |
| -2.649       | 50       |
| -2.996       | 100      |
| -3.689       | 200      |
| -4.382       | 300      |
| -5.075       | 400      |





First-Order

- Time required for a reactant to reach half its original concentration In[A] = -kt + In[A]<sub>o</sub>
- $In(1/2[A]_{o}) = -k t_{1/2} + In[A]_{o}$
- Half–Life:

$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

*k* = rate constant

Half—life <u>does not</u> depend on the concentration of reactants.

• 
$$t\frac{1}{2} = \frac{0.693}{0.0133} = 52.1 \ s$$

A first order reaction is 35% complete at the end of 55 minutes. What is the value of k?

 $\ln[A] = -kt + \ln[A]_{o}$  (first-order reaction)

 $\ln (0.65[A_o]) = -k (55 \text{ min.}) + \ln[A]_o.$ 

$$\ln \frac{0.65[Ao]}{[Ao]} = -kt$$

$$k = -\frac{\ln(0.65)}{55\min} = -\frac{-0.431}{55\min} = 7.8 \times 10^{-3} \min^{-1}$$



#### Second-Order

• Consider the reaction  $A \rightarrow \text{products}$ 

• 
$$Rate = \frac{d[A]}{dt} = k[A]^2$$

$$\frac{d[A]}{[A]^2} = kdt$$

$$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$$

[A] = concentration of A at time t; k = rate constant; t = time [A]<sub>o</sub> = initial concentration of A

plot of  $\frac{1}{[A]}$  against t produces straight line with slope k and intercept of 1/[A].



# Plot of $\ln[C_4H_6]$ vs Time and Plot of $1/[C_4H_6]$ vs Time





Second-Order Use the data (slide 18) to calculate the half-life?

For second-order reaction, K=slope of the line

• 
$$slope = k = \frac{400 - 100}{5000 - 0} = 0.06 \frac{L}{mol.s}$$

From the plot [A]<sub>o</sub> = 100 M

• 
$$t(\frac{1}{2}) = \frac{1}{k[A]_o} = \frac{1}{(0.06)(100)} = 0.167 \ s.$$
  
 $t_{\frac{1}{2}} = \frac{1}{k[A]_o}$ 

- Half—life gets longer as the reaction progresses and the concentration of reactants decrease.
- Each successive half—life is double the preceding one.



#### Zero-Order

- Consider the reaction:  $A \rightarrow Products$
- $Rate = \frac{d[A]}{dt} = k [A]^o = k$  rearrange,
- d[A] = k dt , integrate,  $[A] = -kt + [A]_{o}$

Plot of [A] against t gives straight line of slope –k and intercept [A]<sub>o</sub>

[A] = concentration of A at time t

k = rate constant; t = time;  $[A]_o = initial concentration of A$ 

Plot of [A] vs Time



Cengage Learning. All Rights Reserved.

Zero-Order

• Half-Life:  $t_{\frac{1}{2}} = \frac{[A]_{0}}{2k}$ 

> k = rate constant (s/M); I/M = L/mol.[A]<sub>o</sub> = initial concentration of A

 Half–life gets shorter as the reaction progresses and the concentration of reactants decrease.



### **CONCEPT CHECK!**

How can you tell the difference among 0<sup>th</sup>, 1<sup>st</sup>, and 2<sup>nd</sup> order rate laws from their graphs?

How can you tell the difference among 0<sup>th</sup>, 1<sup>st</sup>, and 2<sup>nd</sup> order rate laws from the units of their rate constant?

How can you tell the difference among 0<sup>th</sup>, 1<sup>st</sup>, and 2<sup>nd</sup> order rate laws from the dependence of the half-life on the initial concentration?



### Summary of the Rate Laws

| Table 12.6 S | Summary of the Kinetics for | Reactions of the | Type aA $\rightarrow$ Products | That Are Zero, | First, or Second | Order in [A] |
|--------------|-----------------------------|------------------|--------------------------------|----------------|------------------|--------------|
|--------------|-----------------------------|------------------|--------------------------------|----------------|------------------|--------------|

|                                                             |                              | Order                       |                                        |  |  |
|-------------------------------------------------------------|------------------------------|-----------------------------|----------------------------------------|--|--|
|                                                             | Zero                         | First                       | Second                                 |  |  |
| Rate law                                                    | Rate = k                     | Rate $= k[A]$               | Rate = $k[A]^2$                        |  |  |
| Integrated rate law                                         | $[A] = -kt + [A]_0$          | $\ln[A] = -kt + \ln[A]_0$   | $\frac{1}{[A]} = kt + \frac{1}{[A]_0}$ |  |  |
| Plot needed to give a straight line                         | [A] versus t                 | ln[A] versus t              | $\frac{1}{[A]}$ versus t               |  |  |
| Relationship of rate constant to the slope of straight line | Slope = -k                   | Slope = -k                  | Slope $= k$                            |  |  |
| Half-Life                                                   | $t_{1/2} = \frac{[A]_0}{2k}$ | $t_{1/2} = \frac{0.693}{k}$ | $t_{1/2} = \frac{1}{k[A]_0}$           |  |  |

© Cengage Learning. All Rights Reserved.



### EXERCISE!

Consider the reaction  $aA \rightarrow Products$ .  $[A]_0 = 5.0 M and k = 1.0 \times 10^{-2}$  (assume the units are appropriate for each case). Calculate [A] after 30.0 seconds of the reaction, assuming the reaction is:

- a) Zero order 4.7 M
- b) First order 3.7 M
- c) Second order 2.0 M

End of CH 12 for Chemistry 108



# Activation Energy, *E*<sub>a</sub>

Energy that must be overcome to produce a chemical reaction.



### Change in Potential Energy





© Cengage Learning. All Rights Reserved.



Arrhenius Equation

$$k = A e^{-E_a/RT}$$

- A = frequency factor
- $E_a$  = activation energy
- R = gas constant (8.3145 J/K·mol)
- T = temperature (in K)



Linear Form of Arrhenius Equation

$$\ln(k) = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln(A)$$



Linear Form of Arrhenius Equation





### EXERCISE!

Chemists commonly use a rule of thumb that an increase of 10 K in temperature doubles the rate of a reaction. What must the activation energy be for this statement to be true for a temperature increase from 25° C to 35° C?

$$\ln\frac{k_2}{k_1} = -\frac{Ea}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

 $k_2=2k_1 \ and \ T_1=298k$  ,  $T_2=308k$ 



Catalyst

- A substance that speeds up a reaction without being consumed itself.
- Provides a new pathway for the reaction with a lower activation energy.



Energy Plots for a Catalyzed and an Uncatalyzed Pathway for a Given Reaction

