Chemistry

Chapter 4

Types of Chemical Reactions and Solution Stoichiometry

Section 4.1
 Water, the Common Solvent

Water:

- One of the most important substances on Earth.
- Can dissolve many different substances.
- It is polar molecule
- $\mathrm{H}_{2} \mathrm{O}$

Section 4.2

The Nature of Aqueous Solutions:
Strong and Weak Electrolytes

Aqueous Solutions

- Solute: Substance being dissolved.
- Solvent: Liquid water.
- Electrolyte: The substance that when dissolved in water produces a solution that conducts electricity.

Section 4.2

The Nature of Aqueous Solutions:
Strong and Weak Electrolytes

Types of Materials

- Strong Electrolytes - Strong electrical conductors, completely ionized in water (100% dissociation). Ionic compounds are strong electrolytes like $\mathrm{HCl}, \mathrm{NaCl}, \mathrm{MgCl}_{2}, \ldots$
- $\mathrm{NaCl} \mathrm{Na}+\mathrm{Cl}$
- Weak Electrolytes - Weak electrical conductors, small degree of ionization in water. Weak salts, weak acids and bases are weak electrolytes. Acetic acid $\mathrm{CH}_{3} \mathrm{COOH}$ is an example.
- Nonelectrolytes - no current flows. Dissolves but does not produce any ions. Like sugar.

Section 4.3

The Composition of Solutions

Concentration, Molarity: molar concentration
Compare solutions (I) and (II):

- (I) 5 g in 50 mL solution \& (II) 10 g in 50 mL solution
- (III) 10 g in 100 mL solution
- (II) is more concentrated than (I)
- (I) 5 g in 50 mL solution and (III) 10 g in 100 mL solution have the same concentration
- Concentration Units:
- Molarity (M) = moles of solute per volume of solution in liters
$M=$ Molarity $=\frac{\text { moles of solute }}{\text { liters of solution }}$

$$
3 \mathrm{M} \mathrm{HCl}=\frac{6 \text { moles of } \mathrm{HCl}}{2 \text { liters of solution }}
$$

Section 4.3

The Composition of Solutions

Example:

A 375.0 g sample of potassium phosphate, $\mathrm{K}_{3} \mathrm{PO}_{4}$, is disolved in enough water to make 500 mL of solution. What is the molarity, M , of the solution? $\mathrm{MM}\left(\mathrm{K}_{3} \mathrm{PO}_{4}\right)=212.3 \mathrm{~g} / \mathrm{mol}$.

$$
\begin{aligned}
& \mathrm{M}=\mathrm{n} / \mathrm{V}(\mathrm{~L}) \\
& \mathrm{n}=\mathrm{mass} / \mathrm{MM} \\
& \mathrm{n}\left(\mathrm{~K}_{3} \mathrm{PO}_{4}\right)=375.0 \mathrm{~g} /(212.3 \mathrm{~g} / \mathrm{mol} .)=1.766 \mathrm{~mol} . \\
& \mathrm{V}(\mathrm{~L})=500 / 1000=0.5 \mathrm{~L} \\
& \mathrm{M}=\mathrm{n} / \mathrm{V}(\mathrm{~L})=1.766 \mathrm{~mol} . / 0.5 \mathrm{~L}=3.53 \mathrm{M} \\
& \mathrm{~K}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{~K}^{+}+\mathrm{PO}_{4}{ }^{3-} \quad\left(\mathrm{K}_{3} \mathrm{PO}_{4} \text { is strong electrolyte }\right) \\
& \mathrm{M}\left(\mathrm{~K}^{+}\right)=3 \times 3.53=10.59 \mathrm{M}
\end{aligned}
$$

Section 4.3

The Composition of Solutions

Concentration of Ions:

- For a $0.25 \mathrm{M} \mathrm{CaCl}_{2}$ solution: (CaCl_{2} is strong electrolyte)
$\mathrm{CaCl}_{2 \text { (s) }} \rightarrow \mathrm{Ca}^{2+}{ }_{\text {(aq.) }}+2 \mathrm{Cl}^{-}{ }_{\text {(aq.) }}$
1 mol . of CaCl_{2} gives 1 mol . of Ca^{2+} ions and 2 moles of Cl^{-}ions. So:
- $\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{CaCl}_{2}\right]=0.25 \mathrm{M}=0.25 \mathrm{M} \mathrm{Ca}^{2+}$
- $\left[\mathrm{Cl}^{-}\right]=2\left[\mathrm{CaCl}_{2}\right]=2 \times 0.25 \mathrm{M}=0.50 \mathrm{M} \mathrm{Cl}^{-}$.

Section 4.3
 The Composition of Solutions

Dilution

- The process of adding water to a concentrated or stock solution to achieve the molarity desired for a particular solution.
- Dilution with water does not alter the numbers of moles of solute present.
- Moles of solute before dilution = moles of solute after dilution

$$
\mathrm{n}=[\mathrm{l} . \mathrm{V}
$$

$$
M_{i} V_{i}=M_{f} V_{f}
$$

Section 4.3

The Composition of Solutions

Example: Dilution

What is the volume of a 2.00 M NaOH solution needed to make 150.0 mL of a 0.800 M NaOH solution?

$$
\begin{aligned}
& M_{i} V_{i}=M_{f} V_{f} \\
& \text { (discuss the units) } \\
& V_{i}=V_{f}\left(\frac{M_{f}}{M_{i}}\right) \\
& =(150.0 \mathrm{~mL})(0.800 \mathrm{M} / 2.00 \mathrm{M}) \\
& \quad=60.0 \mathrm{~mL}
\end{aligned}
$$

Section 4.3

The Composition of Solutions

Exercise (H.W) : Dilution

How many mL of water are required to be added to 100.0 mL of 0.25 M NaOH solution in order to obtain a solution of 0.20 M ?

Section 4.4
 Types of Chemical Reactions

- Precipitation Reactions:

In these reactions, one of the products is insoluble. So, it precipitates.

- Acid-Base Reactions: (OR Neutralization Reactions)

Reactions in which hydrogen $\left(\mathrm{H}^{+}\right)$and hydroxide $\left(\mathrm{OH}^{-}\right)$ions combine together to produce water.

- Oxidation-Reduction Reactions: (Redox Reactions) Reactions that involve electron transfer.

Section 4.5

Precipitation Reactions

The Reaction of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ (aq.) and $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2 \text { (aq.) }}$

$$
\begin{gathered}
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2 \text { (aq.) }}+\mathrm{K}_{2} \mathrm{CrO}_{4 \text { (aq.) }} \rightarrow \mathrm{BaCrO}_{4 \text { (s) }}+2 \mathrm{KNO}_{3 \text { (aq.) }} \\
\mathrm{Ba}^{2+}{ }_{\text {(aq.) })}+\mathrm{CrO}_{4}{ }^{2-}{ }_{\text {(aq.) }} \rightarrow \mathrm{BaCrO}_{4 \text { (s) }}
\end{gathered}
$$

Section 4.5

Precipitation Reactions

Simple Rules for Solubility

1. Nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$, alkali metal (group 1 A) and NH_{4}^{+}salts are soluble.
2. Most $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$, and I^{-}salts are soluble (except $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$).
3. Most sulfate salts are soluble (except $\mathrm{BaSO}_{4}, \mathrm{PbSO}_{4}, \mathrm{Hg}_{2} \mathrm{SO}_{4}, \mathrm{CaSO}_{4}$, BaCrO4).
4. Most $\mathrm{OH}^{-}, \mathrm{S}^{2-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{CrO}_{4}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}$ salts are insoluble, except those containing the cations in Rule 1 above.

Section 4.6
 Describing Reactions in Solution

Write the molecular, ionic equation and net ionic equations for the reaction between cobalt(II) chloride and sodium hydroxide.

Molecular Equation: (Formula Equation)

$$
\mathrm{CoCl}_{2 \text { (aq.) }}+2 \mathrm{NaOH}_{(\mathrm{aq.} .)} \rightarrow \mathrm{Co}(\mathrm{OH})_{2(\mathrm{~s})}+2 \mathrm{NaCl}_{\text {(aq.) }}
$$

Ionic Equation:
$\mathrm{Co}^{2+}{ }_{\text {(aq.) }}+2 \mathrm{Cl}^{-}{ }_{\text {(aq.) }}+2 \mathrm{Na}^{+}{ }_{\text {(aq. })}+2 \mathrm{OH}^{-}{ }_{\text {(aq.) }} \rightarrow \mathrm{Co}(\mathrm{OH})_{2(\text { s) }}+2 \mathrm{Na}^{+}{ }_{\text {(aq.) }}+2 \mathrm{Cl}^{-}{ }_{\text {(aq.) }}$
Net Ionic Equation:

$$
\mathrm{Co}^{2+}{ }_{(\mathrm{aq.} .)}+2 \mathrm{OH}_{(\text {aq. })}^{-} \rightarrow \mathrm{Co}(\mathrm{OH})_{2(\mathrm{~s})}
$$

spectator ions

Section 4.7

Stoichiometry of Precipitation Reactions

Solving Stoichiometry Problems for Reactions in Solution:

$$
\mathrm{n}=(\mathrm{M})(\mathrm{V}) \quad ; \quad \mathrm{n}=\mathrm{mass} / \mathrm{MM}
$$

Section 4.5

Precipitation Reactions

- How many grams of BaSO_{4} are precipitated when 100.00 mL of 0.25 M solution of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is mixed with 150.00 mL 0.200 M solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$? $\quad \mathrm{MM}(\mathrm{g} / \mathrm{mol}):. \mathrm{BaSO}_{4}=233.33$
$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}_{\text {(aq.) }}+\mathrm{Na}_{2} \mathrm{SO}_{4(\text { aq. })} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+\mathrm{NaCl}_{\text {(aq.) }}+2 \mathrm{H}_{2} \mathrm{O}$

Solution:
$\mathrm{n}=\mathrm{mass} / \mathrm{MM} ; \mathrm{M}(\mathrm{mol} . / \mathrm{L})=\mathrm{n} / \mathrm{V}(\mathrm{L}) ; \mathrm{n}=\mathrm{M} . \mathrm{V}(\mathrm{L})$
Our case is mixing of reactants, so, we musn't forget the possibility of having none-stoichmetric mixing, which, of course, implies a limiting reactant.

Stoichiometry: We need Balanced chemical equation.

Section 4.5

Precipitation Reactions

Molecular equation:
$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})} \downarrow+2 \mathrm{NaCl}_{(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}$ 0.0250 (L.R) 0.0300
$\mathrm{n}=\mathrm{M} . \mathrm{V}(\mathrm{L})$
$\mathrm{n}\left(\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}\right)=(0.100 \mathrm{~L})(0.250 \mathrm{M})=0.0250 \mathrm{~mol}$.
$\mathrm{n}\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)=(0.150 \mathrm{~L})(0.200 \mathrm{M})=0.0300 \mathrm{~mol}$.
The stoichiometric ratio of the reactants is $1: 1$ so the L.R is $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}$ because it has the lowest number of moles.
The stoichimetric ratio between the L.R and the precipitate $\left(\mathrm{BaSO}_{4}\right)$ is 1:1, so,
$\mathrm{n}\left(\mathrm{BaSO}_{4}\right)=\mathrm{n}\left(\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}\right)=0.0250 \mathrm{~mol}$.
Mass $\left(\mathrm{BaSO}_{4}\right)=(\mathrm{n})(\mathrm{MM})=0.0250 \mathrm{~mol} . x 233.33=5.83 \mathrm{~g}$.

Section 4.7

Stoichiometry of Precipitation Reactions

Homework:
10.0 mL of a 0.30 M sodium phosphate, $\mathrm{Na}_{3} \mathrm{PO}_{4}$, solution mixed with 20.0 mL of a 0.20 M lead(II) nitrate, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, solution. How many grams of $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ precipitated?
$\mathrm{MM}(\mathrm{g} / \mathrm{mol}):. \mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}=811.54$.
Answer: 1.1 g Pb $3\left(\mathrm{PO}_{4}\right)_{2}$
The molecular equation:
$2 \mathrm{Na}_{3} \mathrm{PO}_{4 \text { (aq.) }}+3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2 \text { (aq.) }} \rightarrow \mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2(\text { s) }}+6 \mathrm{NaNO}_{3 \text { (aq.) }}$

1. Find the number of moles of the reactants?
2. Find the limiting reactant?
3. Find the number of moles of the precipitate, $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
4. Find the mass of the precipitate?

Section 4.8

Acid-Base Reactions

Acid-Base Reactions

Brønsted-Lowry Definitions of acids and bases:

- Acid: proton donor
- Base: proton acceptor
I. Strong acid/strong base reactions:

Example is the reaction between HCl and NaOH , Molecular eqn.: $\quad \mathrm{HCl}_{(\text {(aq.) }}+\mathrm{NaOH}_{\text {(aq.) }} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{NaCl}_{\text {(aq.) }}$ Ionic eqn.:

$$
\mathrm{H}^{+}{ }_{\text {aq.) }}+\mathrm{Cl}_{\text {(aq.) }}^{-}+\mathrm{Na}_{\text {(aq.) }}^{+}+\mathrm{OH}_{\text {(aq.) }}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\text {(l) }}+\mathrm{Cl}^{-}{ }_{\text {(aq.) }}+\mathrm{Na}_{\text {(aq.) }}^{+}
$$

Section 4.8

Acid-Base Reactions

Spectator lons: $\quad \mathrm{Cl}^{-}{ }_{\text {(aq.) }}$ and $\mathrm{Na}^{+}{ }_{\text {(aq.) }}$
Net Ionic Eqn.: (remove the spectator ions)

$$
\begin{gathered}
\left.\mathrm{H}_{(\text {aq. })}^{+}+\mathrm{Cl}_{(\text {aq. })}^{-}+\mathrm{Na}^{+}{ }_{(\text {aq. })}+\mathrm{OH}_{(\text {aq. })}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{Cl}^{-} / \text {(aq. }\right) \\
\mathrm{H}_{(\text {aq. })}^{+}+\mathrm{Na}^{-}{ }_{(\text {aq. })}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{gathered}
$$

Consider the reaction of HNO_{3} and KOH . Strong acid and strong base respectively. Here, K^{+}and NO_{3}^{-}are spectator ions. Consequently, the net ionic equation is the same as the one obtained for the reaction of HCl and NaOH . So,
For a strong acid/strong base reaction the net ionic equation is always:

$$
\mathrm{H}^{+}{ }_{\text {aq. })}+\mathrm{OH}^{-}{ }_{\text {(aq.) }} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Section 4.8
 Acid-Base Reactions

II. Weak acid/strong base or weak base/strong acid reactions: Example: reaction of acetic acid and NaOH
$\mathrm{CH}_{3} \mathrm{COOH}_{\text {(aq.) }}+\mathrm{NaOH}_{\text {(aq.) }} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}{ }_{\text {(aq.) }}$
weak acid strong base
weak dissociation
Na^{+}is the only spectator ion and the net ionic eqn. is:

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\text {aq. })}+\mathrm{OH}^{-} \text {(aq.) } \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CH}_{3} \mathrm{COO}_{\text {(aq.) }}^{-}
$$

Section 4.8

Acid-Base Reactions

Example:

Reaction of 25.00 mL of unknown HCl solution required 26.60 mL of 0.100 M NaOH solution to consume all HCl . What is the concentration of the HCl solution?

$$
\mathrm{HCl}_{(\mathrm{aq.)}}+\mathrm{NaOH}_{(\mathrm{aq.} .)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{NaCl}_{(\mathrm{aq.)}}
$$

The stoichiometric ratio of $\mathrm{HCl}: \mathrm{NaOH}$ is $1: 1$, so:

$$
\begin{aligned}
& n(\mathrm{HCl})=n(\mathrm{NaOH}) \\
& (\mathrm{M})(\mathrm{V})=(\mathrm{M})(\mathrm{V}) \\
& (\mathrm{M})(25.00 \mathrm{~mL})=(0.100)(26.60 \mathrm{~mL}) \\
& \square \mathrm{M}(\mathrm{HCl})=(0.100)(26.60 \mathrm{~mL}) /(25.00 \mathrm{~mL})=0.106 \mathrm{M} \\
& \mathrm{H}_{2} \mathrm{SO}_{4 \text { (aq.) }}+2 \mathrm{NaOH}_{(\text {(aq.) }} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{Na}_{2} \mathrm{SO}_{4 \text { (aq.) }}
\end{aligned}
$$

Section 4.9

Oxidation-Reduction Reactions

Oxidation-Reduction Reactions: (Redox Reactions)

They are reactions that involve one or more electron transfer. Example: $2 \mathrm{Na}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~s})} \rightarrow 2 \mathrm{Na}^{+} \mathrm{Cl}_{(\mathrm{s})}^{-}$

Section 4.9

Oxidation-Reduction Reactions

Rules for Assigning Oxidation States

1. Oxidation state of an atom in an element $=0$
2. Oxidation state of monatomic ion = charge of the ion
3. Oxygen $=-2$ in covalent compounds (except in peroxides where it $=-1) \quad \mathrm{H}_{2} \mathrm{O}_{2}$
4. Hydrogen $=+1$ in covalent compounds (except in hydrides, -1)
5. Fluorine $=-1$ in compounds
6. Sum of oxidation states $=0$ in neutral compounds
7. Sum of oxidation states = charge of the ion in ions
8. $\mathrm{LiH}, \mathrm{NaH}, \mathrm{H} 2 \mathrm{CO} 3, \mathrm{MnO} 4-$

Section 4.9

Oxidation-Reduction Reactions

Find the oxidation states for each of the elements in each of the following compounds:
(go back to chapter 2 and look at the charges of polyatomic ions)

- $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \quad \mathrm{~K}=+1 ; \mathrm{Cr}=+6 ; \mathrm{O}=-2$
- $\mathrm{CO}_{3}{ }^{2-}$
$\mathrm{C}=+4 ; \mathrm{O}=-2$
- MnO_{2}
$\mathrm{Mn}=+4 ; \mathrm{O}=-2$
- PCl_{5}
$\mathrm{P}=+5 ; \mathrm{Cl}=-1$
- SF_{4}
$S=+4 ; F=-1$

Section 4.9
 Oxidation-Reduction Reactions

Redox Reactions' Characteristics

- Transfer of electrons
- Ions are formed upon the electron transfer.
- Oxidation - increase in oxidation state, it happens by loss of electrons).

Reducing agent

- Reduction - decrease in oxidation state it happens by gain of electrons);
oxidizing agent

Section 4.9

Oxidation-Reduction Reactions
Oxidizing agent and reducing agent:
Example: Reaction of sodium and chlorine
$2 \mathrm{Na}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NaCl}_{\text {(aq.) }} \quad$ Oxidation/Reduction Reaction
$2 \mathrm{Na}_{(\mathrm{s})} \rightarrow \mathrm{Na}^{+}{ }_{(\text {aq. })}+2 \mathrm{e}^{-}$
Oxidation half
$\mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}{ }_{\text {(aq.) }}$
Reduction half

- $\mathrm{Na}_{(\mathrm{s})}$: Reducing agent, itself oxidized, it reduced chlorine.
- $\mathrm{Cl}_{2(\mathrm{~g})}$: Oxidizing agent, itself reduced, it oxidized sodium.

Section 4.9

Oxidation-Reduction Reactions

Example:

Is the following an oxidation-reduction reaction? If yes, identify the oxidizing agent and the reducing agent.

$$
\begin{array}{ll}
\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq.)}} \rightarrow \mathrm{ZnCl}_{2(\mathrm{aq.)}}+ & \mathrm{H}_{2(\mathrm{~g})} \\
\mathrm{Zn}_{(\mathrm{s})} \rightarrow \mathrm{Zn}_{\text {(aq.) }}^{+2}+2 \mathrm{e}^{-} & \text {Oxidation half } \\
2 \mathrm{H}_{(\mathrm{aq.} .)}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2(\mathrm{~g})} \quad & \text { Reduction half }
\end{array}
$$

Zn is reducing agent and HCl is oxidizing agent.

Section 4.10

Balancing Oxidation-Reduction Equations

- Balance the reaction between solid zinc and aqueous hydrochloric acid to produce aqueous zinc(II) chloride and hydrogen gas.

$$
\mathrm{Zn}_{\text {(s) }}+\mathrm{HCl}_{\text {(aq.) }} \rightarrow \mathrm{ZnCl}_{2 \text { (aq.) }}+\mathrm{H}_{2(\mathrm{~g})}
$$

- Find the oxidation state for the reactants and products.
- Predict the electron loss and gain, then equalize them.

Section 4.10

Balancing Oxidation-Reduction Equations

Electron loss and gain?
What coefficients are needed to equalize the electrons gained and lost?

$$
1 \mathrm{e}^{-} \text {gained (each atom) } \times 2
$$

- The oxidation state of chlorine remains unchanged.
- $\mathrm{Zn}_{\text {(s) }}+2 \mathrm{HCl}_{\text {(aq.) }} \rightarrow \mathrm{Zn}^{2+}{ }_{\text {(aq.) }}+\mathrm{Cl}_{\text {(aq.) }}^{-}+\mathrm{H}_{2(\mathrm{~g})}$

Section 4.10

Balancing Oxidation-Reduction Equations

Mass and Charge Balances:

$$
\begin{aligned}
& \mathrm{Ce}_{\text {(aq.) }}^{+4}+\mathrm{Sn}_{\text {(aq.) }}^{+2} \rightarrow \mathrm{Ce}_{\text {(aq.) }}^{+3}+\mathrm{Sn}_{\text {(aq.) }}^{+4} \\
& 2 \times\left\{\mathrm{Ce}_{\text {(aq.) }}^{+4}+\mathrm{e}^{-} \rightarrow \mathrm{Ce}_{\text {(aq.) }}^{+3}\right\} \quad \text { reduction }
\end{aligned}
$$

$$
\mathrm{Sn}_{\text {(aq.) }}^{+2} \rightarrow \mathrm{Sn}_{\text {(aq.) }}^{+4}+2 \mathrm{e}^{-} \quad \text { oxidation }
$$

$$
2 \mathrm{Ce}_{\text {(aq.) }}^{+4}+\mathrm{Sn}_{\text {(aq.) }}^{+2} \rightarrow 2 \mathrm{Ce}_{\text {(aq.) }}^{+3}+\mathrm{Sn}_{\text {(aq.) }}^{+4}
$$

