1. The total deaths in a city X in 1975 were 600 . Of these 30 were due to hypertension. If the total population is 100,000 , then the proportionate mortality rate from hypertension is?
A. 0.6
C. $\quad 1.6$
(D.) ${ }^{5} 0.03 \Rightarrow \frac{30}{600} * 100 \%=5 \% D-$
A. 20
B. 1
C. 400
D. 0.2
E. 4
2. In a city XX, in year 1999, the Crude Birth Rate is 44.5, and a Crude Death Rate is 9.8 , and the estimated midyear population is 6 million, and net migration rate is $(-$ 0.6%). The growth rate is?
A. 4.5%
B. 5.47%
$G R=$ RNI + Net migration sate.
C. 3.92%
D. 24%
(E.) $\mathbf{2 . 8 7 \%}$

$$
\begin{aligned}
& \text { B. } \quad 10.5 \text { Proportionate mortality rate }=\text { HyPertension } \% \text { 100\% } \\
& \text { proportionate mortality rate }=\frac{\text { Wy of Death Due }}{\text { Hertion }} * 100 \%
\end{aligned}
$$

5. In a village of $\mathbf{5 0 0 0}$ persons, the following was registered: $\mathbf{2 0 0}$ births, $\mathbf{8 0}$ deaths, of these 20 were below 1 year and one woman died from maternal causes. The rate of natural increase in this village equals?
A. 24
B. 40
C. 2.4
D. 100
E. 0.8

$$
\begin{aligned}
\text { RNI } & =\frac{\text { of Birth } x \text { of Death }}{\text { Population }} * 100 \\
& =\frac{200-80}{5000} *(100)=2.4
\end{aligned}
$$

6. In a district of $\mathbf{1 5 , 0 0 0}$ persons, the following was registered: $\mathbf{6 0 0}$ births, $\mathbf{2 2 5}$ deaths. The rate of natural increase in this district equals?
A. 3.5
(B. 2.5
C. 40
D. 15
E. 37.5

$$
\begin{aligned}
\text { RNI } & =\frac{\text { Birfh }}{\text { Population }} \text { of Death } * 100 \\
& =\frac{600-225}{15000} * 100=2.5
\end{aligned}
$$

7. In a city Z, in year 2018, the Crude Birth Rate is $\mathbf{2 0 / 1 0 0 0}$, Crude Death Rate is $3 / 1000$, and the estimated midyear population is 3 million. The rate of natural increase is?
A. 3.2
B. 1.7
C. 2.3
D. 3.7
E. 4.5
8. In a city Z, in year 2018, the Crude Birth Rate is $\mathbf{2 0 / 1 0 0 0}$, Crude Death Rate is $3 / 1000$, and the estimated midyear population is 3 million. The rate of natural increase is?
A. 3.2
B. 1.7
C. 2.3
D. 3.7
E. 4.5
9. In a district of a total population $=\mathbf{6}, \mathbf{0 0 0 , 0 0 0}$ persons in 2015 the number of cancer deaths reported were 12,000 deaths in the same year. The total deaths were 12,500 . So, the specific death rate from cancer equals?
A. 6
B. 20
C. 10
D. 2
E. 50

10. The estimated midyear population of a country K in a certain year was $10,000,000$.

The total number of male $=\mathbf{6 , 0 0 0}, \mathbf{0 0 0}$. Total number of death was $\mathbf{2 0 , 0 0 0}$
(mar e=12,000). So, Female Specific Death Rate is?
of Female is: $10 * 10^{6}-6 * 10^{6}=4 * 10^{6}$
A. 15 per 1000 of Female is: $10 * 10^{6}-6 * 10=4 * 10^{6}$
B. 2 per 1000 of female Death is : $20 * 10^{3}-12 \times 10^{3}=8 * 10^{3}$
C. 5 per 1000
D. 4 per 1000
E. 10 per 1000

$$
=\frac{8 * 10^{3}}{4 * 10^{6}} * 10^{3}=2 \text { per } 1000
$$

11. If the estimated midyear population of a country V in a certain year was $2,000,000$. The total number of young population below 15 years old $=\mathbf{2 0 0}, 000$, and the total number of population aged $(15-60)$ years old $=800,000$. So, the young dependency ratio is?
A. 5\%
B. 25%
C. 35%
D. 50 \%
E. 75\%

$$
=\frac{200,000}{800,000} * 100=25 \div
$$

12. The total deaths in a country X in 2002 were 300 . Of these 45 were due to diabetes mellitus. If the total population is 45,000 , then the proportionate mortality rate from diabetes mellitus equals to?
A. 15
B. 2.50
C. 0.25
D. 3.50
E. 10
pro portionate mortality
rate

$$
=\frac{* \text { D Death Due to } D M}{* \text { of Deaths }} \times 100
$$

$$
=\frac{45}{300} \times 100=15 \div
$$

OMeasures of mortality :-

1. Crude Death Rate $=\frac{* \text { Death } 1000}{4 \text { of Dilation }}$
2. Age specific Death Rate $=*$ of Deaths in a Certain age in a $\rightarrow 1000$

* f total Popnation
in - certain age
 in a same sex.

4. Cause specific mortality $={ }_{a}^{*}$ of Death Due to

$$
\text { rate } \frac{\text { a certain Cause }}{1000}
$$

5. Proportionate mortality

Θ Measures f fertility:

$$
1 \text { Crude Birth Rate }=\frac{\text { f Live Bird }}{\& \quad \neq 1000}
$$

2-Genral fertility Rate $=\frac{\text { of Live Births }}{*} * 1000$
(GAR) females within
(GfR)
$\begin{aligned} & \text { 3-Age spectic fertility } \\ & \text { rate (ASFR) }\end{aligned}={ }_{x}$ of hive Births born by femak ia a speofic age * female population in $* 1000$ the same age group
4- Total Fertility Rate: Average $*$ of children.
(it is not required to obtain it mathmatically)
5-Gross reproduction Rate
$(G R R)=T_{f} R \% \%$ of female Birth.

- Young dependency ratio $=\frac{f \text { pop }<15 \text { years } 100}{* \text { Pop } 15-<60 y \text { ears }}$
- Old dependency rafio $=+$ Pop $60 \leq$ years $* 100$
* of Population $15-$ < 60 yeans
- Tof.l dependency

Rafio $=\frac{1}{}$ Pop $<15+* f$ Pop $60 \leq$ years

$$
\begin{aligned}
& * \text { of Pop }<15+* f \text { Pop } 60 \leq \text { y cars } \\
& * \text { Pop } 15-<60 \text { years } * 100
\end{aligned}
$$

- كلهم مضروبين في . . ا جماعة الـ Dependency
- Rafe of Nafural increase

RNI = Crude Birfh Crude deafh $\frac{\text { rafe }-\begin{array}{c}\text { rafe }\end{array}}{10}=\%$

Clu

$$
.10<\beta
$$

Or RNI $=\frac{\text { of Birfh - of Deafh }}{* \text { of Populafion }} * 100$

* Grow th rafe $=$ RNI + Nef migraftion rafe
\therefore Nef migrafion

$$
f \text { migrafion Immigrafion - Emigrafion. }
$$

The total deaths in a village in 1990 were 200 . Of these 20 were due to pneumonia. If the total population is 10,000 , then the proportionate mortality rate from pneumonia equals to:

- A. 180 proporfionafe mortality
- (B. $10 \quad$ Rate $=\frac{\text { Pneumonia }{ }^{\text {Death Due to }}}{\text { of Deaths }} * 100=\frac{20}{200} * 100=10$
D. 1.6

In a city, in year 2013, the Crude Birth Rate is 30/1000, Crude Death Rate is $7 / 1000$, and the estimated midyear population is 4 million, and net migration rate is (-0.3%). The rate of natural increase is:
$\begin{array}{lll}\text { A. } & 3.2 \% \\ \text { B. } & 23 \% \\ \text { C. } & 2.3 \%\end{array} \quad R N I=\frac{C B R-C D R}{10}=\frac{30-7}{10}=2.3 \div$
D. $37 / 5000$

In a city $X X$, in year 1999, the Crude Birth Rate is 44.5 , and a Crude Death Rate is 9.8, and the estimated midyear population is 6 millions, and net migration rate is (-0.6%).The growth rate is?

- 4.5%
- 5.47%
$G R=R N I+$ Net migration rate
- $3.92 \%=\frac{C B R-C D R}{10}+$ Net migration rato
$2.87 \%)=(44.5-9.8)+(-0.6)=2.8 \mathrm{~J}$

