

LXI

Chi Square (x^{2}) test

@ July 31-2023

- Prof. Dr. Waqar AL-Kubaisy

SPECIFIC LEARNING OUTCOMES

On completion of this lecture, you should be able to: 1.Explain the basis for the use of Chi square tests on qualitative data
2.Explain the limitations of the Chi square tests
3.Carry out the Chi square tests
4.Interpret the findings from the Chi square tests of significance 5.Interpret degrees of freedom and critical values of Chi square statistics from Chi square table

CONTENTS

1.Explanation of the basis for the use of Chi square tests on qualitative data
2.Explanation of the limitations of the Chi square tests 3.Calculation of Chi square
4.Chi square table
5.Interpretation of the findings from the Chi square tests of significance

31/7/202z An important thing is the type of the variable concerned.

An important thing is the type of the variable concerned.

when the data measurement is continuous

t test be applied
to test significance difference between two means
Body weight,
F test be applied

to test significance difference among more than two means Body weight adult males

An important thing is the type of the variable concerned.

The data we have here is only enumerative data or counting data.
Counting No. of individuals falling in one category, class, group or another

The data consist of counting No. in each sample or group

An important thing is the type of the variable concerned.

Numbers of students who were succeeded
??????
????????
cause could be

succeeded

Numbers of students who were succeeded

Baghdad	$\frac{\text { Total }}{240}$	$\frac{\text { succeeded }}{180}$	$\frac{\%}{75 \%}$	$\frac{\text { Not succeeded }}{60}$
Mutah	$\frac{200}{440}$	$\frac{170}{350}$	$\underline{85 \%}$	$\frac{30}{90}$

Proportion succeeded $350 / 440=0.80$

Proportion succeeded at Mutah ??

Proportion succeeded at Baghdad ??

	Total		succeeded	$\%$
Not succeeded				
Baghdad	220	180	82%	40
Mutah	200	170	85%	30
Syria	320	200	62.5%	120
UiTM	380	220	57.9%	160
	1120	770		350

$770 / 1120=0.687$
$350 / 1120=0.3125$
$770 / 1120 \times 100=68.7 \%$

$350 / 1120$ X100 = 31.25\%

When data measurement is
Qualitative data counting data
Categorical data Discrete.

The data consist of proportion of individuals in each group or sample,

* We have absolute numbers
*We have counting numbers
so
\square comparing between
\square Rates, proportions of individuals in each group
Two groups
More than two groups
statistical inference are made in term of difference in proportions

$$
\begin{aligned}
& H_{0}=P_{1}=P_{2}=P_{0} \\
& H_{A}=P_{1} \neq P_{2} \neq P_{0}
\end{aligned}
$$

male female smoker not smoker

$>$ count the number of observation fall in each category The result is frequency data enumerative data because we
enumerate the No. of person in each category
Categorical data, because we count the No. of person in each category

When measurement is

merely the presence or absence of certain condition
Absolute No X
\checkmark Proportion
the population parameter is
P : :the proportion of condition in population which is estimated by
P : the proportion of condition in the sample So
testing hypothesis about population proportion "P"
based on sample proportion P is similar to testing hypothesis about μ.

The techniques for testing hypothesis concerning Qualitative data counting data
Categorical data
Discrete
is known as
chi square (X^{2}) test

Chi square is

used in testing difference in proportions

$$
\begin{aligned}
& H O=P_{1}=P_{2}=P_{0} \\
& H_{A}=P_{1} \neq P_{2} \neq P_{0}
\end{aligned}
$$

while t test and F test are used in testing difference in means.

Also classification could be more than 2 groups, could be three, four, five K groups .
P1 P2 P3 P4 P5 Pk

Tumour stage I II III Class stage level I II III IV V
P1 P2 P3 P4 P5 Pk

In this case

$$
\begin{aligned}
& H o=P_{1}=P_{2}=P_{3}=P_{4}=P_{5}=P_{0} \\
& H_{A}=P_{1} \neq P_{2} \neq P_{3} \neq P_{4} \neq P_{5} \neq P_{0}
\end{aligned}
$$

	Jordanian	Iraqi	Syrian	Egyptian	total
smoker					
Not smoker					
total					

When measurement is

merely the presence or absence of certain condition Absolute No X
\checkmark Proportion
the population parameter is
P : :the proportion of condition in population which is estimated by
P: the proportion of condition in the sample So
Testing hypothesis about population proportion "P"
based on sample proportion P
If the true population proportion of condition is Po and sample size is N , So
Po $N=$ total No. of condition that expected (E) in population.

Chi square test denoted $\mathrm{X}^{2} x^{2}=\sum \frac{(O-E)^{2}}{E}$
This has two common applications: first as test

whether two categorical variables are

 independent or not;second as a test of
whether two proportions are equal or not

$$
\begin{aligned}
& H o=P_{1}=P_{2}=P_{0} \\
& H_{A}=P_{1} \neq P_{2} \neq P_{0}
\end{aligned}
$$

$$
\begin{aligned}
& H o=P_{1}=P_{2}=P_{3}=P_{4}=P_{5}=P_{0} \\
& H_{A}=P_{1} \neq P_{2} \neq P_{3} \neq P_{4} \neq P_{5} \neq P_{0}
\end{aligned}
$$

The chi square test is applied to frequency data in form of a contingency table i.e. a table of cross- tabulations) with the rows represent categories of one variable and
the columns categories of a second variable.

	\hat{c}	\uparrow	total
succeeded	70	90	160
not succeeded	10	30	40
Total	80	120	200

The null hypothesis
is that the two variables are unrelated
the rows represent categories of one variable and the columns categories of a second variable

Sex	succeeded	not succeeded	Total
0	70	10	80
\bigcirc	90	30	120
Total	160	40	200

The H 0 ; is that the two variables are unrelated The HA ???????????????

If the variables display are Exposure and outcome. Then
we usually we arrange the table with
Exposure as the row variable and
Out come as the column variable. and display \% corresponding the exposure variable

Exposure	Out come	+ve	Out come-ve total
yes			
no			
Total			

Example
smoking during pregnancy and relation to small birth weight
smoker or non smoked mother during pregnancy?? small birth weight no small birth weight ???

		q	total
succeeded	70	90	160
not succeeded	10	30	40
Total	80	120	200

SEXX		succeeded	not succeeded	Total
	O	70	10	80
	+	90	30	120
Total		160	40	200

	$\hat{\sigma}$	total	
succeeded	70	90	160
not succeeded	10	30	40
Total	80	120	200

???? merely the presence or absence of certain condition, Absolute No X
\checkmark Proportion

			total		
succeeded	70	87.5%	90	75%	160
80%					
not succeeded	10	12.5%	30	25%	40
Total		80	120	200	

If the true population proportion of condition is $160 / 200=0.8$

$$
40 / 200=0.2
$$

Po $=0.8$ and
Rate (proportion) of succeeded $\lambda^{2}\left(p_{1}\right)=70 / 80=87.5 \%$ Rate(proportion) of succeeded $+\left(\mathrm{p}_{2}\right)==90 / 120=75 \%$

$$
\begin{aligned}
& H o=P_{1}=P_{2}=P_{0} \\
& H_{A}=P_{1} \neq P_{2} \neq P_{0}
\end{aligned}
$$

If the true population proportion of condition is $160 / 200=0.8 \quad 40 / 200=0.2$
Po $=0.8 \quad$ and
sample size is N, (200) So Po $\mathrm{N}=$ Total No. of condition that expected (E) in Each population .
万 80 X $0.8=$
ㅇ $120 \times 0.8=$
$80 \mathrm{X} 0.2=$
$120 \mathrm{X} 0.2=$

expected (E)

				${ }^{+}$	total	$\sum 0-E=$ Zero
succeeded	70	64	90		160	
not succeeded	10	16	30	24	40	
Total	80		120		200	O-E

the actual observed No. of subject with condition (O) and the expected No. of condition (E)
\& Looking for the difference between the observed and expected frequencies

$$
\sum O-E=\text { Zero } \quad \sum \frac{O-E}{E}=\text { Zero }
$$

So if the actual No. of subject with condition observed No.(O) is close to the expected No. (E) then
the Ho will be not rejected (). This mean that $\mathrm{P}=\mathrm{Po}$.
Usually summation $\quad \sum 0-E=$ Zero $\quad \sum \frac{0-E}{E}=$ Zero so
To overcome this result, we have to square 0-E make it as $(O-E)^{2}$ then divided by $\mathrm{E} \frac{(O-E)^{2}}{E}$ for
each cell

* When O and E are close together, then the computed X^{2} is small and Ho is not Rejected.

When O and E values are far apart Then $O-E$ is great, $(O-E)^{2}$ be more great This will lead to Reject Ho .

In Enumerate (Discrete) value variable, we classified individuals into: Those having the condition P1 Those having no condition P2

	male	female	tota 1

$$
\begin{aligned}
& H o=P_{1}=P_{2}=P_{0} \\
& H_{A}=P_{1} \neq P_{2} \neq P_{07}
\end{aligned}
$$

Chi square (X^{2})

It is the sum of the squared difference between the observed frequency and expected frequency, divided by the expected frequency .

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

sign. Difference in proportion
Comparing calculated X 2 with tabulated X^{2} in relation to critical region

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

Therefore, x 2 is always UPPER ONE SIDED TEST

Comparing calculated x 2 with tabulated X^{2} in relation to critical region

```
sign. Difference in proportion
```


Chi square is

used in testing difference in proportions while t test and F test are used in testing difference in means.

$$
\begin{aligned}
& H o=P_{1}=P_{2}=P_{0} \\
& H_{A}=P_{1} \neq P_{2} \neq P_{0}
\end{aligned}
$$

Chi square (x^{2})
It is the sum of the squared difference between the observed frequency and expected frequency, divided by the expected frequency .

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

Comparing calculated X^{2} with tabulated X^{2} in relation to critical region

If the variables display are Exposure and outcome. Then
we usually we arrange the table with
exposure as the row variable and out come as the column variable. and display \% corresponding the exposure variable

Exposure	Out come +ve	Out come -ve	total
yes			
no			
Total			

Table of Chi-square statistics

df	$\mathbf{P}=0.05$	$\mathbf{P}=0.01$	$\mathbf{P}=0.001$	21		32.67	38.93	46.80
1	3.84	6.64	$\underline{10.83}$	22		33.92	40.29	48.27
2	5.99	9.21	13.82	23		35.17	41.64	49.73
3	7.82	11.35	16.27			36.42	42.98	51.18
4	9.49	13.28	18.47			37.65	44.31	52.62
5	11.07	15.09	20.52			38.89	45.64	54.05
6	12.59	16.81	22.46	X^{2}		40.11	46.96	55.48
7	14.07	18.48	24.32	28		41.34	48.28	56.89
8	15.51	20.09	26.13	29		42.56	49.59	58.30
9	16.92	21.67	27.88			42.56	49.59	58.30
10	18.31	23.21	29.59	30		43.77	50.89	59.70
11	19.68	24.73	31.26	31		44.99	52.19	61.10
12	21.03	26.22	32.91	32		46.19	53.49	62.49
13	22.36	27.69	34.53	33		47.40	54.78	63.87
14	23.69	29.14	36.12	34		48.60	56.06	65.25
15	25.00	30.58	37.70	35		49.80	57.34	66.62
16	26.30	32.00	39.25	36		51.00	58.62	67.99
17	27.59	33.41	40.79	37		52.19	59.89	69.35
18	28.87	34.81	42.31	38		53.38	61.16	70.71
19	30.14	36.19	43.82	39^{40}	55.76	54.57	${ }_{63}^{63.43}$	72.03 .41
20	31.41	37.57	45.32			54.57		

41	56.94	64.95	74.75	61	80.23	89.59	100.88
42	58.12	66.21	76.09	62	81.38	90.80	102.15
43	59.30	67.46	77.42		82.53	92.01	103.46
44	60.48	68.71	78.75		83.68	93.22	104.72
45	61.66	69.96	80.08		84.82	94.42	105.97
46	62.83	71.20	81.40	x^{2}	85.97	95.63	107.26
47	64.00	72.44	82.72		87.11	96.83	108.54
48	65.17	73.68	84.03	68	88.25	98.03	109.79
49	66.34	74.92	85.35	69	89.39	99.23	111.06
50	67.51	76.15	86.66	70	90.53	100.42	112.31
				71	91.67	101.62	113.56
51	68.67	77.39	87.97	72	92.81	102.82	114.84
52	69.83	78.62	89.27	73	93.95	104.01	116.08
53	70.99	79.84	90.57	74	95.08	105.20	117.35
54	72.15	81.07	91.88	75	96.22	106.39	118.60
55	73.31	82.29	93.17	76	97.35	107.58	119.85
56	74.47	83.52	94.47	77	98.49	108.77	121.11
57	75.62	84.73	95.75	78	99.62	109.96	122.36
58	76.78	85.95	97.03	79	100.75	111.15	123.60
59	77.93	87.17	98.34	80	101.88	112.33	124.84
60	79.08	88.38	99.62				

81	103.01	113.51	126.09
82	104.14	114.70	127.33
83	105.27	115.88	128.57
84	106.40	117.06	129.80
85	107.52	118.24	131.04
86	108.65	119.41	132.28
87	109.77	120.59	133.51
88	110.90	121.77	134.74
89	112.02	122.94	135.96
90	113.15	124.12	137.19
91	114.27	125.29	138.45
92	115.39	126.46	139.66
93	116.51	127.63	140.90

93	116.51	127.63	140.90
94	117.63	128.80	142.12
95	118.75	129.97	143.32
96	119.87	131.14	144.55
97	120.99	132.31	145.78
98	122.11	133.47	146.99
99	123.23	134.64	148.21
100	124.34	135.81	149.48

Thank You

Application of X 2 .

1. 2×2 table .
2. $\quad \mathrm{a} \times \mathrm{b}$ table .

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

