

Chi Square (<u>x</u>2) test @ July 31- 2023

• Prof. Dr. Waqar AL-Kubaisy

SPECIFIC LEARNING OUTCOMES

On completion of this lecture, you should be able to:

1.Explain the basis for the use of Chi square tests on qualitative data

2.Explain the limitations of the Chi square tests

3.Carry out the Chi square tests

4.Interpret the findings from the Chi square tests of significance 5.Interpret degrees **of freedom and critical** values of Chi square statistics from **Chi square table**

CONTENTS

1.Explanation of the basis for the use of Chi square tests on **qualitative data**

- 2.Explanation of the limitations of the Chi square tests
- 3.Calculation of Chi square
- 4.Chi square table

5.Interpretation of the findings from the Chi square tests of significance

when the data measurement is continuous

t test be applied

to test significance difference between two means

Body weight,

F test be applied

to test significance difference among more than two

X

Egypt

Palestine

Jordan.

Iraq

means Body weight adult males

Numbers of students who were succeeded

An important thing is the type of the variable concerned.

The data we have here is only enumerative data or counting data.

Counting No. of individuals falling in one category, class, group or another

The data consist of counting No. in each sample or group

An important thing is the type of the variable concerned.

Numbers of students who were succeeded

cause could be

	<u>Total</u>	<u>succeeded</u>	<u>%</u>	Not succeed	ed
Baghdad	240	180	75%	60	\bigwedge
Mutah	<u>200</u> 440	<u>170</u> 350	<u>85%</u>	<u>30</u> 90	χ²

Proportion succeeded 350/440=0.80

 Proportion succeeded at Mutah ??
 Proportion succeeded at Baghdad ??

 cause could be
 Image: Could be

	<u>Total</u>	succe	eded <u>%</u>	Not succeeded
Baghdad	220	180	82%	40
Mutah	200	170	85%	30
Syria	320	200	62.5%	120
UiTM	380	220	<u>57.9%</u>	<u>160</u>
	1120		770	350

770/1120 = 0.687

350/1120 = 0.3125

X²

770/1120 X 100 = 68.7%

350/1120 X100 = **31.25%**

When data measurement is

Qualitative data counting data Categorical data Discrete.

The data consist of proportion of individuals in each group or sample,

- We have absolute numbers
- We have counting numbers
 - **SO**
- □ comparing between
- **Rates**, proportions of individuals in each group
 - Two groups

More than two groups

statistical inference are made in term of <u>difference in proportions</u> $Ho = P_1 = P_2 = P_0$

 $H_A = P_1 \neq P_2 \neq P_0$

We classify persons into categories such as

- male female
- smoker not smoker

 Succeeded and not succeeded.... etc smoker, not smoker and X smoker then
 > count the number of observation fall in each category
 The result is frequency data enumerative data because we enumerate the No. of person in each category
 Categorical data , because we count the No. of person in each category

When measurement is merely the presence or absence of certain condition, Absolute No X ✓ Proportion

the population parameter is

- P: :the proportion of condition in population which is estimated by
- P: the proportion of condition in the sample So

testing hypothesis about population proportion "P" based on sample proportion P is similar to testing hypothesis about μ.

The techniques for testing hypothesis concerning Qualitative data counting data Categorical data Discrete

<u>Chi square is</u>

used in testing difference in proportions

$$Ho = P_1 = P_2 = P_0$$
$$H_A = P_1 \neq P_2 \neq P_0$$

while t test and F test are used in testing difference in means.

Also classification could be more than 2 groups, could be three, four, five K groups . P1 P2 P3 P4 P5 Pk Tumour stage I II III Class stage level I II III IV V P1 P2 P3 P4 P5 Pk In this case

$$Ho = P_1 = P_2 = P_3 = P_4 = P_5 = P_0$$
$$H_A = P_1 \neq P_2 \neq P_3 \neq P_4 \neq P_5 \neq P_0$$

	Jordanian	Iraqi	Syrian	Egyptian	total
smoker					
Not smoker					
total					

When measurement is

merely the presence or absence of certain condition, Absolute No X

 \checkmark Proportion

the population parameter is

- P: :the proportion of condition in population which is estimated by
- P: the proportion of condition in the sample So
- Testing hypothesis about population proportion "P" based on sample proportion P

If the true population proportion of condition is Po and sample size is N, So

Po N = total No. of condition that expected (E) in population .

<u>Chi square test denoted</u> $X^{2} = \sum \frac{(O-E)^{2}}{E}$ This has two common applications: **first as test**

contingency tab

whether two categorical variables are independent or not;

<u>second as</u> a test of whether two proportions are equal or not

$$Ho = P_1 = P_2 = P_0$$
$$H_A = P_1 \neq P_2 \neq P_0$$

$$Ho = P_1 = P_2 = P_3 = P_4 = P_5 = P_0$$
$$H_A = P_1 \neq P_2 \neq P_3 \neq P_4 \neq P_5 \neq P_0$$

The chi square test is applied to frequency data in form of a contingency table i.e. a table of cross- tabulations) with the rows represent categories of one variable and

the columns categories of a second variable.

	3	Q +	total
succeeded	70	90	160
not succeeded	10	30	40
Total	80	120	200

The null hypothesis is that the <mark>two variables are unrelated</mark>

the rows represent categories of one variable and the columns categories of a second variable

Sex	succeeded	not succeeded	Total
2	70	10	80
4	90	30	120
Total	160	40	200

The H0; is that the two variables are unrelated The HA ???????????

If the variables display are Exposure and outcome. Then

we usually we arrange the table with

Exposure as the **row** variable and

Out come as the column variable.

and display % corresponding the exposure variable

Exposure	Out come +ve	Out come -ve	total
yes			
no		and the second	and the first
Total			

<u>Example</u>

smoking during pregnancy and relation to small birth weight

smoker or non smoked mother during pregnancy??small birth weightno small birth weight ???

	8	Q	total
succeeded	70	90	160
not succeeded	10	30	40
Total	80	120	200

SEX	succeeded	not succeeded	Total
5	70	10	80
9	90	30	120
Total	160	40	200

	3		total
succeeded	70	90	160
not succeeded	10	30	40
Total	80	120	200

????

merely the presence or absence of certain condition, Absolute No X

✓ Proportion

		3		\mathcal{Q}	total
succeeded	70	87.5%	90	75%	160 <mark>80%</mark>
not succeeded	10	12.5%	30	25%	40
Total		80		120	200

If the true population proportion of condition is 160/200 =0.8 40/200 = 0.2Po =0.8 and Rate (proportion) of succeeded $(p_1)=70/80=87.5\%$ Rate(proportion) of succeeded $(p_2)==90/120=75\%$

$$Ho = P_1 = P_2 = P_0$$

$$H_A = P_1 \neq P_2 \neq P_0$$
????

	5				X ²
		3		\bigcirc	total
succeeded	70	(87.5%)	90	(75%)	160 <mark>80%</mark>
not succeeded	10	(12.5%)	30	(25%)	40
Total		80		120	200

If the true population proportion of condition is 160/200 = 0.8 40/200 = 0.2Po =0.8 and sample size is N, (200) So Po N =Total No. of condition that expected (E) in Each population . 3 80X 0.8 = 80X 0.2 =2 120X 0.8 = 120X 0.2 =

the actual observed No. of subject with condition (O) and the expected No. of condition (E) * Looking for the difference between the observed and expected frequencies $\sum O - E = Zero$ $\sum \frac{O - E}{E} = Zero$ $\sum \frac{O - E}{E} = Zero$

So if the actual No. of subject with condition observed No.(O) is close to the expected No. (E) then

the Ho will be not rejected (). This mean that P=Po.

Usually summation $\sum 0 - E = Zero$

$$\sum \frac{O-E}{E} = Zero$$
 So

To overcome this result, we have to square O-E make it as $(O-E)^2$ then divided by E $(O-E)^2$ for each cell

Then we have to do the summation $\chi^2 = \sum \frac{(O-E)^2}{E}$

Therefore, χ^2 is always UPPER ONE SIDED TEST 31/7/2023

✤ When O and E are close together, computed x² is small and Ho is not Rejected.

then the

✤ When O and E values are far apart Then O-E is great, (O-E)²be more great This will lead to Reject Ho.

In Enumerate (Discrete) value variable, we classified individuals into: Those having the condition P1 Those having no condition P2

sign. Difference in proportion

	male	female	tota 1
Present			
Absent			
total			

$$Ho = P_1 = P_2 = P_0$$
$$H_A = P_1 \neq P_2 \neq P_0$$

<u>Chi square (χ^2) </u>

It is the sum of the squared difference between the observed frequency and expected frequency, divided by the expected frequency.

sign. Difference in proportion

Comparing calculated χ^2 with tabulated χ^2 in relation to critical region

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Therefore, $\chi 2$ is always UPPER ONE SIDED TEST

Comparing calculated χ^2 with tabulated χ^2 in relation to critical region

sign. Difference in proportion

Chi square is

used in testing difference in proportions while t test and F test are used in testing difference in means.

$$Ho = P_1 = P_2 = P_0$$
$$H_A = P_1 \neq P_2 \neq P_0$$

<u>Chi square (χ^2) </u>

It is the sum of the squared difference between the observed frequency and expected frequency, divided by the expected frequency .

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Comparing calculated χ^2 with tabulated χ^2 in relation to critical region

If the variables display are Exposure and outcome. Then

we usually we arrange the table with exposure as the row variable and out come as the column variable .

and display % corresponding the exposure variable

Exposure	Out come	+ve	Out come -ve	total
yes				
no				
Total				

Table of Chi-square statistics

				n Squur				1
df	P =0.05	P = 0.01	P = 0.001		21	32.67	38.93	46.80
1	3.84	6.64	<u>10.83</u>		22	33.92	40.29	48.27
2	5.99	9.21	13.82		23	35.17	41.64	49.73
3	7.82	11.35	16.27	\mathbf{i}		36.42	42.98	51.18
4	9.49	13.28	18.47	1		37.65	44.31	52.62
5	11.07	15.09	20.52			38.89	45.64	54.05
б	12.59	16.81	22.46	X ²		40.11	46.96	55.48
7	14.07	18.48	24.32		28	41.34	48.28	56.89
8	15.51	20.09	26.13		29	42.56	49.59	58.30
9	16.92	21.67	27.88	-				
10	18.31	23.21	29.59		30	43.77	50.89	59.70
11	19.68	24.73	31.26		31	44.99	52.19	61.10
12	21.03	26.22	32.91		32	46.19	53.49	62.49
13	22.36	27.69	34.53		33	47.40	54.78	63.87
14	23.69	29.14	36.12		34	48.60	56.06	65.25
15	25.00	30.58	37.70		35	49.80	57.34	66.62
16	26.30	32.00	39.25		36	51.00	58.62	67.99
17	27.59	33.41	40.79		37	52.19	59.89	69.35
18	28.87	34.81	42.31		.38	53.38	61.16	70.71
19	30.14	36.19	43.82		39 ⁴⁰ 55.76		⁶³ 69 62.43	70.71 72.06
20	31.41	37.57	45.32			34.37	02.43	/12.00

41	56.94	64.95	74.75	61	80.23	89.59	100.88
42	58.12	66.21	76.09	62	81.38	90.80	102.15
43	59.30	67.46	77.42		82.53	92.01	103.46
44	60.48	68.71	78.75	_	83.68	93.22	104.72
45	61.66	69.96	80.08		84.82	94.42	105.97
46	62.83	71.20	81.40		85.97	95.63	107.26
47	64.00	72.44	82.72	(²	87.11	96.83	108.54
48	65.17	73.68	84.03	68	88.25	98.03	109.79
49	66.34	74.92	85.35	69	89.39	99.23	111.06
				70	90.53	100.42	112.31
50	67.51	76.15	86.66	71	91.67	101.62	113.56
51	68.67	77.39	87.97	72	92.81	102.82	114.84
52	69.83	78.62	89.27	73	93.95	104.01	116.08
53	70.99	79.84	90.57	74	95.08	105.20	117.35
54	72.15	81.07	91.88	75	96.22	106.39	118.60
55	73.31	82.29	93.17	76	97.35	107.58	119.85
56	74.47	83.52	94.47	77	98.49	108.77	121.11
57	75.62	84.73	95.75	78	99.62	109.96	122.36
58	76.78	85.95	97.03	79	100.75	111.15	123.60
59	77.93	87.17	98.34	80	101.88	112.33	124.84
60	79.08	88.38	99.62				

81	103.01	113.51	126.09
82	104.14	114.70	127.33
83	105.27	115.88	128.57
84	106.40	117.06	129.80
85	107.52	118.24	131.04
86	108.65	119.41	132.28
87	109.77	120.59	133.51
88	110.90	121.77	134.74
89	112.02	122.94	135.96
90	113.15	124.12	137.19
91	114.27	125.29	138.45
92	115.39	126.46	139.66
93	116.51	127.63	140.90

93	116.51	127.63	140.90
94	117.63	128.80	142.12
95	118.75	129.97	143.32
96	119.87	131.14	144.55
97	120.99	132.31	145.78
98	122.11	133.47	146.99
99	123.23	134.64	148.21
100	124.34	135.81	149.48

Application of $\chi 2$. 1. 2×2 table . 2. $a \times b$ table .

 $\neg (O - E)$ E