

Biostatistics

LVI

PROF, DR. WAQAR AL-KUBAISY 17-7-2023

Interpreting Standard Deviation

For bell-shaped shaped distributions, the following statements hold:
-Approximately 68% of the data fall between $\bar{x}-1$ s and $\bar{x}+1 s$
-Approximately 95% of the data fall between $\bar{x}-2 \mathrm{~s}$ and $\bar{x}+2 s$
-Approximately 99.7% of the data fall between $\bar{x}-3 \mathrm{~s}$ and $\bar{x}+3 \mathrm{~s}$
For NORMAL distributions, the word 'approximately' may be removed from
The above statements.

Example: Suppose the Hb levels of 150 women has a roughly bell-shaped distribution with a mean of $12 \mathrm{mg} / \mathrm{dl}$. and standard deviation of $0.10 \mathrm{~g} / \mathrm{dl}$.
a) Give the interval of the amount of Hb level that approximately 68% of the women will have

$$
12-0.1 \text { to } 12+0.1=11.9 \text { to } 12.1 \mathrm{~g} / \mathrm{dl} \text {. }
$$

b) Give the interval of the amount of Hb level that approximately 95% of the women will have

$$
12-2(0.1) \text { to } 12+2(0.1)=11.8 \text { to } 12.2 \mathrm{~g} / \mathrm{dl} .
$$

Important or Uses of SD

Population

NDC

Probability
a sound generalized information about the population from which the sample has been drown, depending on evidence of this sample

Normal Distribution Curve

In large population Graphically
\longrightarrow Form of Curve

Normal Distribution curve,

 Gaussian Curve , Bell Curve .\qquad In NDC

*All the observation are lying in area under the curve
*Average measures (mean Md , Mo) in the center of in the center of observation.
Rest of observations distributed around the average measures.

* in a homogenous form

Half of them higher than the mean Half of them lesser than the mean $\bar{X} \bar{X}$ So
the distribution of observation in NDC is symmetrical.

Divided the area under the curve into two equal halves of observation, 50% of observation their values less than \bar{X} value
and 50% of observation their values higher than \bar{X}

By Measures of variability (S.D)

S.D and its multiplicity (one S.D, two S.D, three S.D divided the area under the NDC into small areas,
each area containing certain and fixed proportion of observation

Within ± 1 S.D from the X
 68\% of observations,(34\%o each side)
 68\% of observation deviated from the \bar{X} by not more than ± 1 S.D ???????

```
Within }\pm2\mathrm{ S.D from the }\overline{X
95% of observations lie,
95% of observations deviated from the \overline{X}}\mathrm{ by not more than
\pm2 S.D .
???????
```

Within ± 3 S.D from the \bar{X}
99\% of observations are located, 99\% of observations deviated from the \bar{X} by not more than ± 3 S.D . ???????

??????????

Characteristics of the NDC

1.Bell shape .
2.Symmetrical distribution of observations on both sides
3.Unimodal ??????????.
4.Curving downward on both sides from the mean toward the horizontal, but never touch it .
5. Mean, Median and Mode of distribution are identical or coincide.
6.All the Medical, Biological phenomenon following its distribution.
7-Area under curve divided by
Mean into two equal halves
8. Between \bar{X} and certain multiplicity of S.D on either side an area containing
fixed proportion of observation 7/20/202368\% 99\% 95\%.

Importance

1-Most of the phenomenon in Medical field follow this distribution.

2-It is for justification and calculation of confidence interval .
3-It is form the basis of most of significance testing hypothesis . That is most test of significance depend on the theory of ND

a sound generalized information about the population from which the sample has been drown, depending on evidence of this sample

???

Different samples \rightarrow different \bar{X}_{S} even if the samples size are equal

There is a variation in the \bar{X}_{s} of different samples This variation is due to sampling variation.

Sampling Variability

Mean \pm S.D of sample . \bar{X}
The interest of sample not in its own right but what it tell us about the population which this sample represent

The aim of Biostatistics is to have
a sound generalized information about the population from which the sample has been drown, depending on evidence of this sample

Cont. ...Sampling Variability

true mean ,
Population Parameters
population mean
μ (mue)
S.D of population
σ (sigma
mean of
universe

Cont. ...Sampling Variability

Different samples \rightarrow different \bar{X}_{S} even if the samples size are equal

There is a variation in the \bar{X}_{S} of different samples This variation is due to sampling variation.

Cont. ...Sampling Variability true mean

the sample measurement (mean \pm S.D) is not exactly reflect its population.
There is a difference between sample mean \bar{X} and population mean μ

Cont. ...Sampling Variability
There is a difference between
sample statistics and population parameters, this variation is called Sampling Error

There is a difference between sample means and population mean.????????
\square Deviation of the samples mean \bar{X}) from the population mean (μ)
\checkmark this will be the S.D of sample mean ($\bar{X}_{\text {. }}$ from the population mean (μ)
$>$ Average of S.D of sample means from population mean which is

\square known as Standard Error

Cont. ...Sampling Variability

This mean that samples \bar{X}_{S} distributed around population mean,
or Samples \bar{X} s scatter around the μ.
The measurement of this scattering equal to
7/20/2023
S.D of the sample

Standard Error S.E

- It is the average deviation of the sample mean (\bar{X}) from the true (population) mean (μ) of the population. So it is equal to the S.D of sample mean \bar{X} divided by the square root of the sample size (N)

depend on sample size
S.D of sample
???????

The larger the sample size (N) \rightarrow smaller the S.E The smaller the S.D of sample \rightarrow smaller the S.E

Standard Error S.E

Example

8 plasma values of uric acid the mean (\bar{X} of uric acid is 3 ± 0.31

$$
S . E=\frac{0.31}{\sqrt{8}}=0.11
$$

$$
S . E=\frac{S . D}{\sqrt{N}}
$$

16 plasma values of uric acid the mean (\bar{X}))of uric acid is $\mathbf{3} \pm 0.31$

$$
=\frac{0.31}{\sqrt{ } 16}=0.0775
$$

$$
\frac{0.21}{\sqrt{16}}=0.0525
$$

$$
\frac{0.41}{\sqrt{ } 16}=0.1025
$$

\square Distribution of samples means $\left(\bar{X}_{S}\right)$ around the population mean (μ) in NDC area

* is similar to that
of the distribution of X (values) around sample mean \bar{X}
Sample means $\bar{X}_{S} \quad$ deviated from μ by $\checkmark \quad$ S.E and its Multiplicity, so
$X \mid$ deviated from μ by
1 S.E, 2 S.E and 3 S.E in proportion 68\% 95\% 99\%.

Remember that the

* SD is
$>$ measure of spread of the data in a single sample .
* The S.E. is
$>$ a measure of spread in ALL sample means from a population.
\square We notice that the as sample size n increases the S.E decrease

???????

Importance
1-Most of the phenomenon in Medical field follow this distribution.

2-It is for justification and calculation of confidence interval .

3-It is form the basis of most of significance testing hypothesis . That is most test of significance depend on the theory of NDC .

Importance

1-Most of the phenomenon in Medical fifield follow this distribution.

2-It is for justification and calculation of confidence interval.

3-It is form the basis of most of significance testing hypothesis.
That is most test of significance depend on the theory of NDC .

Confidence Interval

The properties of NDC can be applied in distribution of $\left(\bar{X}_{\mathcal{A}}\right)$

* Distribution of samples mean (\bar{X}_{S}) around the population mean or universe mean (μ) in NDC area is similar to that of the distribution of X (values) around sample mean (\bar{X})
\square deviated from μ by S.E and its multiplicity, so deviated from μ by 1S.E, 2S.E and 3S.E in proportion
*Deviation of $\overline{\mathbf{X}}$ from μ by more than 2 S.E is a rare event or uncommon,

It is not more the 0.05 (5\%).
Deviation of from μ by more than 3 S.E is very very rare event
it is not more the 0.01 (1\%)

Cont. Confidence Interval
So by follow the NDC, we could find that the rang at which population mean μ is located depending on relation to the sample mean \bar{X}
5% or 0.05 of the sample means($\bar{X}^{\text {s }}$) deported from the μ by more than ± 2 S.E (out side the limit of $\bar{X} \pm 2$.E). So approximately 95% of the samples mean $\bar{X} \mathbf{s}$ will
lie within $2 S$. E above or below μ.

Standard Error S.E

Example

8 plasma values of uric acid the mean (\bar{X}) of uric acid is $\mathbf{3} \pm 0.31$

$$
S . E=\frac{0.31}{\sqrt{8}}=0.11
$$

So by this fact we could construct or conduct the population mean (μ) based on sample mean (\bar{X}

Population mean (μ) within 95\%

$$
\begin{gathered}
=\bar{X} \pm 2 S . E \\
=\bar{X} \pm 1.96 S . E \\
=3 \pm 1.96 \times 0.11 \\
=3 \pm 0.215
\end{gathered}
$$

95\% of population mean μ rang (2.785) 2.8-3.215, such rang we call it Confidence Interval .

So 95% confidence interval of $\mu=X \pm 1.96 S . E$

Similarly
99\% confidence interval of μ

$$
\begin{aligned}
&=\bar{X} \pm 3 S \cdot E \\
&= \bar{X} \pm 2.58 S \cdot E \\
&= \text { ???????? } \\
&=? ? ? ? ? ? ? ? ~
\end{aligned}
$$

Cont. Confidence Interval

Similarly
99\% confidence interval of $\mu=X \pm 3 S . E$

$$
=\bar{X} \pm 2.58 S . E
$$

$=3 \pm 2.58 \times 0.11$
$=3 \pm 0.2838$
=2.7162-3.2838

Standard Error S.E

Example

8 plasma values of uric acid the mean ($\bar{\gamma}$ of uric acid is $\mathbf{3} \pm \mathbf{0 . 3 1}$

$$
S . E=\frac{0.31}{\sqrt{8}}=0.11
$$

$$
S . E=\frac{S . D}{\sqrt{N}}
$$

16 plasma values of uric acid the mean (\bar{x})) of uric acid is $\mathbf{3} \pm 0.31$

$$
=\frac{0.31}{\sqrt{16}}=0.0775
$$

$$
\frac{0.21}{V 16}=0.0525
$$

Confidence Interval

It is the rang of the variability of population mean (μ) around the sample mean \bar{X}

99% C.I population mean $\mu=\bar{X} \pm 2.58 S . E$

95\% C.I population mean $\mu=\bar{X} \pm 1.96 S . E$

Confidence Interval

*95\% chance that the error in as our estimate of \bar{X} is not numerically grater than 1.96 S.E .

* In other word, if variable is normally distributed, then we may say within certainty that 95% of all observation
$>$ will fall with a rang ± 1.96 S.E from the μ, or
* 95\% certainty we have, that our sample mean
\checkmark does not differ from population mean (μ,) by not more than ± 1.96 S.E .
\checkmark Only 5% of the sample mean \bar{X} deport from μ by more than 1.96 S .E.

$$
\bar{X}
$$

Confidence Interval

*99\% chance that the error in as our estimate of \bar{X} is not numerically grater than 2.58 S.E .

* In other word, if variable is normally distributed, then we may say within certainty that 99% of all observation
$>$ will fall with a rang ± 2.58 S.E from the μ, or
* 99\% certainty we have, that our sample mean
\checkmark does not differ from population mean (μ,) by not more than ± 2.58 S.E.
\checkmark Only 1% of the sample mean \bar{X} deport from μ by more than 2.58 S .E.

$$
\bar{X}
$$

Calculate measures of CT

Calculate measures of Dispersion
Within which range the 95% of the population mean Within which range the 99% of the population mean age of 50 patients
$68,62,62,66,68,65,64$, , 40, ए-, 38. 42, 47. 50,55, 56, 60 72, 80 J $77,80,81,89,86,85,83,72,70,71,79,76,77$, $80,90,97,94,90,65, .60,67,6388,84,84,87$

