

Biostatistics

LIV 12 -July 2023

PROF, DR. WAQAR AL-KUBAISY

-this approach might not be enough,
-comparisons between one set of data \& another
-summarize data by one more step further .
-presenting a set of data by a

- single Numerical value

The central value as representative value in a set of data,

1-Measures of central tendencies (Location).
A value around which the data has a tendency to congregate (come together)or cluster

2-Measures of Dispersion, scatter around average
A value which measures
the degree to which the data are or are not, spread out

The central value as

1-Measures of central tendencies (Location).
A value around which the data has a tendency to congregate (come together)or cluster 2-Measures of Dispersion, scatter around average A value which measures
the degree to which the data are or are not, spread out

1-Measures of central tendencies (Location)

75, 75, 75, 75, 75, 75, Mean = ????

75, 70, 75. 80, 85.
Mean = ????

60, 65, 55, 70, 75, 75, ,70, 80, Mean= ????

2-Measures of Dispersion,

$\sum \mathrm{X}$
N

```
The central value as
1-Measures of central tendencies
2-Measures of Dispersion,
```


Measures of Dispersion (Measures of Variation) (Measures of Scattering) Measures of spread

Measures of Dispersion

SHOOTER A

SHOOTER B

Both shooters are hitting around the "centre" but shooter B is more "accurate"

Measures of Dispersion

Measures of Dispersion
(Measures of Variation)
(Measures of Scattering) measures of spread

1- Range

2-Interquartile range

3- Variance

4-Stander Deviation

5-Coefficient of variance

the choice of the most appropriate measure
depends crucially on the type of data involved

Measures of spread

Measuring of spread are very useful.
There are three main measures in common use .
once again the type of data influence the choice of an appropriate measure
the choice of the most appropriate measure depends crucially on the type of data involved

```
The Range
simplest most obvious one of dispersion.
```

1- Range
2-Interquartile range
3- Variance
4- Stander Deviation
5-Coefficient of variance

It is the distance from the smallest to the largest
It Obtained by
subtracting lowest value from the highest value in a set of data.
$\begin{array}{llllllll}\text { Pulse rate } & 70 & 76 & 74 & 78 & 72 & 74 & 76\end{array}$
Range = 78-70 =

The range is best written
like rang of data (from- to) 70-78
rather than single-valued difference which is much less informative
-The range is not affected by skewness
$\begin{array}{lllllllll}7072 & 74 & 76 & 76 & 78 & 78 & 78-70 & 70-78\end{array}$
sensitive to the addition or removal of an outlier value 667074 90, $100120124 \quad 124-66$ 66-124 667074 90, 100120124545 66-545
Its disadvantage
it is based on only two observations
(the lowest and highest value) and

* give no idea about others,
not take into consideration other values in data sensitive to an outlier value Therefore It is not very useful measures of variation, because it does not use other observation

Therefore;

Sensitive an outlier value Interquartile rang (l q r).

\checkmark measure the variation of one observation from the other \checkmark Standard deviation

Interquartile rang (l q r).

Percentile

A percentile provides information about how the data are spread over the interval from the smallest value to the largest value.

The pth percentile (25\%) (30\%): is a value such that at least p percent of the observations are less than or equal to this value and at least ($\mathbf{1 0 0}-\mathrm{p}$) (75%)) (70%) percent of the observations are greater than or equal to this value.

The pth percentile is a value so that roughly p\% of the data are smaller and (100-p)\% of the data are larger.

Three Steps for computing a percentile.

1. Sort the data from low to high;
2. Count the number of values (n);
3. Select the $p^{*}(n+1)$ observation

Examples

The following data represents cotinine levels in saliva ($\mathrm{ng} / \mathrm{ml}$) after smoking. We want to compute the 50th percentile.
$73,58,67,93,33,18,147$

Sorted data: 18, 33, 58, 67, 73, 93, 147
There are $n=7$ observations.
Select $0.50 *(7+1)=4$ th observation.
Therefore, the 50th percentile equals 67 .
Notice that there are
three observations larger than 67 and three observations smaller than 67.

Examples

The following data represents cotinine levels in saliva ($\mathrm{ng} / \mathrm{ml}$) after smoking. We want to compute the 20th percentile.
$73,58,67,93,33,18,147$
Sorted data: 18, 33, 58, 67, 73, 93, 147

Suppose we want to compute the 20th percentile. Notice that $p^{*}(n+1)=0.20^{*}(7+1)=1.6$. This is not a whole number so we select halfway between 1st and 2 nd observation
they have to go six tenths of the way to the second value.

Calculation of percentile value

The pth percentile is the value in the $p / 100(n+1)$ th position.

For example
the 20th percentile
Calculation of percentile value
the birth weight(grm) of 30 infants which we put in ascending order.

2860	2994	3193	3266	3287	3303	3388
3399	3400	3421	3447	3508	3541	3594
3613	3615	3650	3666	3710	3798	
3800	3886	3896	4006	4010	4090	4094

Calculation of percentile value

The pth percentile is the value in the $p / 100(n+1)$ th position.
the 20th percentile is the
20/100(n+1) with the BW values 20/100 (30 +1)
0.2×31 observations= 6.2observation
the birth weight of 30 infants which we put in ascending order.

2860	2994	3193	3266	3287	3303	3388	3399	3400

$\begin{array}{lllllllll}3421 & 3447 & 3508 & 3541 & 3594 & 3613 & 3615 & 3650 & 3666\end{array}$
$\begin{array}{llllllll}3710 & 3798 & 3800 & 3886 & 3896 & 4006 & 4010 & 4090 \\ 4094\end{array}$
420042064490

Cont. ..Calculation of percentile value

The 6th value is 3303 g the 7 th value is 3388 g
the 20th percentile is $3303+0.2$ of 85 g which is
$3303 \mathrm{~g}+0.2 \mathrm{x} 85 \mathrm{~g}=$
$=3303 \mathrm{~g}+17 \mathrm{~g}$
$=3320 \mathrm{~g}$

a difference of 85 g

The pth percentile is the value in the $p / 100(n+1)$ th position. Similarly we could calculate
cont.Calculation of percentile value
the deciles
which subdivide the data values into 10 (not 100)equal division, and

Quintiles

which sub-divide the values into
five equal -sized groups
Collectively we call percentiles,
deciles divide the sorted data into ten equal parts, so that each part
represents $1 / 10$ of the sample or population. and

quintiles

The pth percentile is
the value in the $p / 100(n+1)$ th position.

A quartile is :
a division of observations into four defined $25 \% \quad 50 \%$
Interquartile rang (i q r).
One solution to the problem of the sensitivity to extreme value (outlier) is to
\checkmark chop the quarter(25 percent) of the values of both ends of the distribution
(which removes any troublesome outliers)
then measure the range of the remaining values
\square this distance is called
\square interquartile range or iq r .

Calculation of iqr
 To calculate iqr we need to determine two values

first quarantile (Q1)
The value which
cuts off the bottom 25 percent of values

third quarantile (Q3)

 The value which cuts off the top 25 percent of values,The interquartile range is then written as (Q1 to Q3)
$31 X 0.25=7.75$
$31 X .75=23.25$
the birth weight of 30 infants which we put in ascending order.
$\begin{array}{llllllllllllllll}2860 & 2994 & 3193 & 3266 & 3287 & 3303 & 3388 & 3399\end{array}$
$\begin{array}{lllllllll}3400 & 3421 & 3447 & 3508 & 3541 & 3594 & 3613 & 3615\end{array}$
$\begin{array}{lllllllllllllllll}3650 & 3666 & 3710 & 3798 & 3800 & 3886 & 3896 & 4006\end{array}$
$4010 \quad 4090 \quad 4094 \quad 4200 \quad 4206 \quad 4490$

The pth percentile is
the value in the $\mathrm{p} / 100(\mathrm{n}+1)$ th position.
with the BW data
Q1 $=3396.25 \mathrm{~g}$ and
Q3 $=3923.50 \mathrm{~g}$
$7.75^{\text {th }} 3399-3388=11 x .75=8.25+3388=$ 3396.25
$0.75 \times 31=23.25^{\text {th }}$
4006-3896=110x.25=27.5+3896=3923.5
the birth weight of 30 infants which we put in ascending order.
$2860 \quad 29943193 \quad 32663287 \quad 3303 \quad 3388$ 3394 3400
$\begin{array}{llllllllll}3421 & 3447 & 3508 & 3541 & 3594 & 3613 & 3615 & 3650 & 3666\end{array}$

420042064490
Therefore iqr $=3369.25$ to 3923.50)g the middle 50 percent

Calculation of iqr

the middle 50 percent of infant weighed between 3396.25 and 3923.50 g
\checkmark The interquartile range
indicate
the spread of the middle 50\%of the distribution,
together with the median is useful adjunct (accessory) to the range
it is less sensitive to the size of the sample providing that this is not too small

The interquartile range is not affected either by

Outlier

skewness

BUT

it does not use all of the information in the data set since it ignores the bottom and top quarter of values.
\checkmark measure the variation of one observation from the other
\checkmark Standard deviation

60, 65, 55, 70, 75, 75, 70, 80, Mean= ????
the mean (average) distance of all data values from the over all mean of all values.

Standard deviation (SD)

The limitation of iqr it does not use all of the information in the data since it omits the top and bottom quarter of values.
An alternative approach use the idea of summarizing spread by measuring
the mean (average) distance of all data values from the over all mean of all values.
-The smaller the mean distance is
\checkmark the narrower the spread of values must be and visa versa
this is known as standard deviation

