

Type	Synoial - Poly $9 x_{i}$ al (Ball and socker)	$\begin{aligned} & \text { Whee } \\ & \text { Synovialt- modified } \\ & \text { Hinge } \end{aligned}$	$A \cap M e$ $\underbrace{\text { Syovial }}_{\text {Sariety Hing }}$
$\begin{aligned} & \text { Articula } \\ & \text { surfice } \end{aligned}$	2-Articular surfaces: a- Head of the femur. b- Lunate surface of the acetabulum of hip bone.	- Articular surfaces 1- Lower surfaces of both femoral condyles 2- Superior surfaces of both tibial 3 - Posterior surface of the patella. - Complex: a- Femoropatellar articulation b- Femorotibial articulation	A- Superior articular surface: 1) Lower end of the tibia. 2) Lateral surface of the medial malleolus 3) Medial surface of the lateral malleolus B- Inferior articular surface; talus. ज1ab
capsule:		* Capsule of knee joint is relatively thin Attachment to the femur: to articular margin of the medial condyle. - Laterally, articular margin to lateral condyle outside origin of popliteus muscle (popliteus is intracapsular extrasynovial) \qquad margins of both condyles 3- Anteriorly, margins of patella N.B; the capsule may be absent tendon and ligamentum patellae.	\longrightarrow
Synovial	covers all non-articular surfaces inside the capsule	-It lines the capsule and nonarticual structures 1) Anteriorly, extends upward above the patella forming suprapatellar bursa. 2) Below the patella, it forms infrapatellar fold. 3) Laterally, it forms a synovial sheath around tendon of popliteus.	\longrightarrow
Bursa	-	* Bursa On the medial aspect of knee joint 1-A bursa between medial head of gastrocnemius and capsule. 2- A bursa between tibial collateral ligament and tendons of (S.G.S). 3-A bursa between Semimembranous and medial condyle of the tibia. * Bursa On the anterior aspect; 1- Suprapatellar bursa: between lower part of anterior surface of femur and quadriceps tendon, continues with synovial membrane. 2-Subcutaneous prepatellar bursa: between skin and lower part of the patella. - Inflammation and enlargement of this bursa usually affects persons who kneel over the knees during work. This condition is known as "house maid's knee" 3- Subcutaneous infrapatellar bursa: between skin and lower part of tibial tuberosity. 4- Deep infrapatellar bursa: between upper end of tibia and ligamentum patellae.	-

* Cruciate ligaments: dryousseflhusselneyahoo.com
- They are so called because they form an X-shaped figure.
-They are so called because they form an X-shaped figure.
- named anterior and posterior according to their attachment to the tibia.
a- Anterior cruciate ligament:
- Attachment to the tibia; to the anterior intercondylar area

Course; It extends upwards, backwards and laterally.
-Attachment to the femur; to posterior part of the medial surface of the lateral condyle. - Function: 1- Prevents posterior displacement of femur on tibia.

2- Prevents hyperextension of the knee.

- Lax in flexion while tense in full exte
b- Posterior cruciate ligament (larger and stronger than the anterior):
- Attachment to the tibia; to the posterior intercondylar area.
- Attachment to the tibia; to the posterior intercondylar area.

Course; It extends upwards, forwards and medially.
Attachment to the femur; to the anterior part of the lateral surface of the medial condyle.
s : It mrevents antert
not ligament

(\quad - Menisci (Semilunar cartilages, C-shaped):

- They cover the articular surfaces of both tibial condyles.
- Their peripheral borders are thick, but they gradually become It is not covered by synovial membrane.
They are attached to the intercondylar area by anterior and posterior horns.
-Medial meniscus is larger than lateral meniscus, so The lateral horns inside the medial horns.
- Transverse ligament. It connects the anterio
both menisi
dr_yousseflhusseineyahoo.com
igament

	* Movements of the hip joint - Flexion: mainly by psoas major and iliacus. - helped by sartorius, rectus femoris and pectineus. - Extension: mainly by gluteus maximus. - helped by the hamstrings. - Flexion and extension occur around a transverse axis.	- Movements of knee joint I- Flexion: mainly by the hamstring muscles (semimembranosus, semitendinosus and biceps femoris). - Gastrocnemius, plantaris when the foot is fixed on ground 2- Extension: by the quadriceps femoris (rectus femoris, vasti medialis, lateralis, and intermedius). 3- Medial rotation: (SGS) Sartorius, gracillis \& semitendinosus and semimembranosus . 4- Lateral rotation by the biceps femoris only.	- Movements of the ankle joint A- Dorsiflexion: by the muscles of the anterior compartment of the leg 1- Tibialis anterior, 2- Extensor hallucis longus., 3-Extensor digitorum longus., 4- Peroneus tertius) B- Plantar flexion by muscles of the posterior compartment of the reg (1- Tendocalcaneus. 2- Tibialis posterior. 3- Flexor Digitorum longus. 4- Flexor Hallucis longus)
5	- Adduction: mainly by adductor longus, brevis and magnus. - helped by pectineus and gracillis. - Abduction: mainly by glutei medius and minimus. - helped by tensor fasciae latae and sartorius. Abduction and adduction occurs around anteroposterior axis * Movements of the hip joint - Medial rotation: mainly by of the glutei medius and minimus. - helped by tensor fasciae latae. - Lateral rotation: by 1) Piriformis. 2) Obtuartor internus 3) 2 Gemilli, 4) Quadratus femoris. 5) Obturator externus. - Circumduction; Combination of flexion, abduction, extension and adduction done in succession.	Unlocking of knee joint At the beginning of flexion by Popliteus muscle Lateral rotation of femur on tibia by Popliteus when the foot is fixed on the ground Or medial rotation of tibia on femur by Popliteus when the foot is raised from the ground Locking of knee joint - At the end of extension: tightening of the anterior cruciate ligament terminates the movement of the lateral condyle of femur - Full extension: The articular surface on the medial condyle is longer than lateral. Medial rotation of femur on tibia when the foot is fixed on the ground Or lateral rotation of tibia on femur when the foot is raised from the ground	- Locking and unlocking of the ank a- Locking, during dorsifilexiont the wide anterior part of the trochlear surface of the talus is-lodged into the narrow posterior part of the superior articulaf: surface (socket). b- Unlocking, during plantar flexion, the narrow posterior part of the trochilear surface is lodged in the wide anterior part of the superior articular surface. In this position, the foot can be moved slightly from side to side. Prof. Dr. Youssef Hussein Anatomy - YouTube
$\begin{aligned} & 3100 \\ & \operatorname{Sn} 10 \end{aligned}$	- Arterial supply (anastomoses around the neck of the femur) 1- Ascending branch of the medial circumflex femoral artery 2- Ascending branch of the lateral circumflex femoral artery: 3- Acetabular branch of the obturator artery. 4- Superior gluteal artery. 5- Inferior gluteal artery. * Nerve supply of the hip joint 1- Femoral nerve (Nerve to rectus femoris). 2 - Obturator nefve (anterior branch). 3-Nerve to qủadratus femoris (sacral plexus).	Anastomosis around the knee joint - 5 Branches from popiteal artery 1- Superior lateral genicular artery. 2- Inferior lateral genicular artery. 4- Superior medial genicular artery. 5- Inferior medial genicular artery. 3 - Middle genicular artery. - 2 Branches from femoral artery 1- Descending genicular artery. 2- Descending branch of lateral circumflex femoral artery. - 2 Branches from anterior tibial artery 1 - Anterior tibial recurrent artery. 2- Posterior tibial recurrent artery. - 1 Branch from posterior tibial artery 1- Circumflex fibular artery.	*Blood supply - Branches of the anterior tibial artery. * Anastomoses around the ankle joint - Anterior medial malleolar artery. - Anterior lateral malleolar artery Branches of posterior - Posterior medial malleolar brarches. Medial Calcanear branches Branches of peroneal artery -Perforating branches. - Lateral Calcanean branches. * Nerve supply: from the anterior and posterior tibial nerves.
	\longrightarrow	Nerve supply 1- Femoral nerve through nerves to 3 vasti muscles. 2- Obturator nerve from the posterior division. 3- Tibial nerve; a- Superior medial genicular nerve. b- Inferior medial genicular nerve. c- Middle genicular nerve. 4- Common peroneal (lateral popliteal) nerve; a- Superior lateral genicular nerve. b- Inferior lateral genicular nerve. c- Recurrent genicular nerve.	

- Nelaton's line
- a line drawn from the anterior superior iliac spine to the ischial tuberosity. This line normally passes on the top of the greater trochanter.
- Dislocation of the hip joint, the top of the greater trochanter is raised above the line.
- Stability of the hip joint
- It is very strong and stable joint due to the following factors:

1- The depth of acetabulum to accommodate greater part of head of the femur. 2- The strong ligaments around the joint.
3- The strong muscles around the joint.

Gower sign

- Injury of inferior gluteal nerve: Paralysis of the gluteus maximus muscle leading to difficult in climbing up stairs and rising from the floor is squatting position.
- Gower's sign, in Paralysis of the muscle the patient Cannot stand without support, he rises slowly supporting his hand on his leg then on his thigh. He climbs on himsolf

* Trendelenburg's sign

- Paralysis of left superior gluteal nerve
- When standing on normal right lower limb: right glutei medius and minimus contracted to prevent tiltǐng of the pelvis to the affected left side
- When standing on the affected left limb: pelvis tilting to the normal right side due to loss of actions of left glutei medius and minimus

Paralysis of glutei medius and minimus:

1) One side paralysis leads to lurching gait.

dr_youssefhussein@yahoo.com
2) Both sides paralysis lead to waddling gait (from side to side like the duck).
