Drugs and the Kidney

Drugs and the Kidney

- 1 Renal Physiology and Pharmacokinetics
- 2 Drugs and the normal kidney
- 3 Drugs toxic to the kidney
- 4 Prescribing in kidney disease

Normal Kidney Function

- 1 Extra Cellular Fluid Volume control
- 2 Electrolyte balance
- 3 Waste product excretion
- 4 Drug and hormone elimination/metabolism
- 5 Blood pressure regulation
- 6 Regulation of haematocrit
- 7 regulation of calcium/phosphate balance (vitamin D3 metabolism)

Clinical Estimation of renal function

Clinical examination

pallor, volume status, blood pressure measurement, urinalysis

Blood tests

- Routine Tests
- haemoglobin level
- electrolyte measurement (Na ,K , Ca, PO₄)
- urea
- creatinine normal range 70 to 140 µmol/

Serum Creatinine and GFR

- Muscle metabolite- concentration proportional to muscle mass
 - High: muscular young men
 - Low: conditions with muscle wasting
 - elderly
 - muscular dystrophy
 - Anorexia
 - malignancy
- "Normal" range 70 to 140 µmol/litre

Serum Creatinine and GFR

Tests of renal function cont.

24h Urine sample-Creatinine clearance

- chromium EDTA Clearance
- gold standard Inulin clearance

Pharmacokinetics

- Absorption
- Distribution
- Metabolism
- Elimination
 - filtration
 - secretion

Nephrotoxic Drugs

- Dose dependant toxicity
 - NSAIDs including COX 2
 - Aminoglycosides
 - Radio opaque contrast materials
- Idiosyncratic Renal Damage
 - NSAIDs
 - Penicillins
 - Gold, penicillamine

NSAIDs (Non-steroidal anti inflammatory drugs)

- Commonly used
 - Interfere with prostaglandin production, disrupt regulation of renal medullary blood flow and salt water balance
- Chronic renal impairment
 - Habitual use
 - Exacerbated by other drugs (antihypertensives, ACE inhibitors)
 - Typical radiological features when advanced

Figure 3. Anatomic locations of renal prostaglandin (PG) biosynthesis imply modulatory roles in renal function. Identification of PGI₂ in cortical glomeruli and arterioles suggests, for example, a role in renal hemodynamics, while identification of PGE₂ in medullary interstitial cells, the loop of Henle, and the medullary portion of the collecting duct suggests a role in salt and water balance. In general, renal prostaglandins such as PGI₂, PGE₂, thromboxane A₂ (TXA₂), and PGF₂ appear to modulate the actions of systemic and local hormones, perhaps most crucially as a counterregulatory system when the kidney is faced with pathologic states threatening its function.

Aminoglycosides

- Highly effective antimicrobials
 - Particularly useful in gram -ve sepsis
 - bactericidal
- BUT
 - Nephrotoxic
 - Ototoxic
 - Narrow therapeutic range

Prescribing Aminoglycosides

 Once daily regimen now recommended in patients with normal kidneys

High peak concentration enhances efficacy

- long post dose effect
- Single daily dose less nephrotoxic
- Dose depends on size and renal function

Intravenous contrast

Used commonly

- CT scanning, IV urography, Angiography
- Unsafe in patients with pre-existing renal impairment
- Risk increased in diabetic nephropathy, heart failure & dehydration
- Can precipitate end-stage renal failure
- Cumulative effect on repeated administration
- Risk reduced by using Acetylcysteine ?

Prescribing in Kidney Disease

- Patients with renal impairment
- Patients on Dialysis
- Patients with renal transplants

Principles

- Establish type of kidney disease
 - Most patients with kidney failure will already be taking a number of drugs
 - Interactions are common
 - Care needed to avoid drug toxicity
- Patients with renal impairment and renal failure
 - Antihypertensives
 - Phosphate binders

Dosing in renal impairment

- Loading dose does not change (usually)
- Maintenance dose or dosing interval does
 - T $\frac{1}{2}$ often prolonged
 - Reduce dose OR
 - Increase dosing interval
 - Some drugs have active metabolites that are themselves excreted renally
 - Warfarin, diazepam

Amphotericin

- Class
 - Anti fungal agent for topical and systemic use
- Mode of action
 - Lipid soluble drug. Binds steroid alcohols (ergosterol) in the fungal cell membrane causing leakage of cellular content and death. Effective against candida species
 - Fungistatic or fungicidal depending on the concentration
 - Broad spectrum (candida, cryptosporidium)

Amphotericin

- Indications
 - iv administration for systemic invasive fungal infections
 - Oral for GI mycosis
- Side effects
 - Local/systemic effects with infusion (fever)
 - Chronic kidney dysfunction
 - » Decline in GFR with prolonged use
 - » Tubular dysfunction (membrane permeability)
 - » Hypokalaemia, renal tubular acidosis (bicarb wasting type 1/distal), diabetes insipidus, hypomagnesaemia
 - » Pre hydration/saline loading may avoid problems

Toxicity can be reduced substantially by liposomal packing of Amphotericin

Lithium toxicity

- Lithium carbonate Rx for bipolar affective disorder
- Toxicity closely related to serum levels
- Symptoms
 - CVS arrhythmias (especially junctional dysrrythmias)
 - CNS tremor confusion coma
- Treatment
 - Supportive Haemodialysis and colonic irrigation for severe levels
 - Inadvertent intoxication from interaction with ACEI & loop/thiazide diuretic
 - Carbamezepine and other anti epileptics increase neurotoxicity

Digoxin toxicity

Incidence

 High levels demonstrated in 10% and toxicity reported in 4% of a series of 4000 digoxin samples

- Kinetics
 - large volume of distribution (reservoir is skeletal muscle)
 - about 30% of stores excreted in urine/day

Treatment of digoxin toxicity

- Supportive
 - Correction of electrolyte imbalances
 - Atropine for bradycardia avoid cardio stimulants because arrythmogenic
- Limitation of absorption
 - Charcoal effective within 8 hours (or cholestyramine)

Specific measures

- DIGIBIND Fab digoxin specific antibodies. Binds plasma digoxin and complex eliminated by kidneys (used when OD is high/near arrest)
- Enhanced elimination
 - Dialysis is ineffective. Charcoal/cholestyramine interrupt enterohepatic cycling.