Gonorrhea:

<u>1-Uncomplicated Gonococcal Infections:</u>

Ceftriaxone or Cefotaxime + Azithromycin (single dose) <u>*In case of azithromycin allergy:</u> Doxycycline (twice a day for <u>7 days</u>)

2-Prophylactic measure to prevent opthalmia neonatorum:

0.5% Erythromycin ointment or 1% solution of Silver Nitrate or 1% Tetracycline ointment

<u>3- Gonoccal Conjunctivitis</u>:

Ceftriaxone + Azithromycin with <u>Saline irrigation</u> + topical antibiotic solution (single dose)

4- Gonoccal Epididymitis:

Ceftriaxone (single dose) + Doxycycline (twice daily for <u>10 days</u>)

5- PID (Pelvic inflammatory disease):

Ceftriaxone (single dose) + Doxycycline (**twice daily for <u>14 days</u>**) with or without Metronidazole (**twice daily for 14 days**)

6-DGI (Dissemmniated gonorrheal infection):

Ceftriaxone (every 24h) + Azithromycin (single dose)

- ** All sex partners with sexual contact with patients within <u>60 days</u> should be <u>tested</u> for gonorrhea.
- ** Sex partners with sexual contact within <u>two weeks</u> should be <u>treated</u> presumptively for gonorrhea.

Chlamydial Urethritis:

Azithromycin (single dose) or Doxycycline (twice a day for 7 days)

*Alternative Regimens: 4 2 1 - 7 days

Erythromycin (<u>four</u> times a day for 7 days) Ofloxacin (<u>twice</u> a day for 7 days) Levofloxacin (<u>once</u> daily for 7 days) Doxycycline – 10

<u>Syphilis:</u> — *Benzathine Penicillin therapy*

<u>1- Primary, Secondary or Early latent Syphilis:</u>

Benzathine penicillin (single dose)

2- Late latent Syphilis or latent with unknown duration:

Benzathine penicillin (weekly for 3 weeks)

3- Congenital Syphilis:

Benzathine penicillin (single dose)

4- for patients allergic to penicillin:

A- Tetracycline (for 14 or 28 days)
B- Erythromycin (for 14 or 30 days)
C- Azythromycin (for 14 days)
D- Ceftriaxone (for 10 days)
*in case of neurosyphilis, the dose is given daily for 10-14 days

Chancroid (Soft sore):

Erythromycin (**for 7 days**) as <u>a Main Treatment</u> Ceftriaxone or Azithromycin as <u>Alternatives</u> as (single dose)

Lymphogranuloma venereum:

Tetracycline (four times daily for 14 days)

- * Erythromycin or Doxycycline or Azythromycin can be used for treatment
- * Most cases require repeated courses

Oral metronidazole	Oral Tinidazole	
- Cure rates are >95%.	Single-dose taken with food.	
<u>Treatment should include infected</u> persons & their partners due to:	Cure rates range from 86-100%.	
High rates of infection in asymptomatic partners and high rates of re-infection	$\frac{For \ resistant \ infections}{for \ 14 \ days.} \rightarrow twice \ daily$	
	<u>When metronidazole fails tinidazole</u> <u>may be used</u>	

Trichomoniasis: (Parasitic STIs)

<u>**HIV**</u>:

HAART \rightarrow 2 NRTIs & 1 of the following (NNRTIs, Protease inhibitors, or Integrase inhibitors))

NRTI	NNRTI
Phosphorylated by host kinases	No need for phosphorylation
<u>Competitive inhibition</u> of reverse transcriptase and chain termination of DNA	<u>Not competitive</u> (Bind to site another than NRTI)
*main component of HAART	Bind to and inhibit reverse transcriptase inhibiting DNA synthesis.
Zidovudine is used for general	
prophylaxis and for prevention of	e.g: Efavirenz
vertical transmission in pregnancy	

	protease inhibitors (PIs)	Integrase inhibitors	Fusion inhibitors
Examples:	Atazanavir Lopinavir Ritonavir	Raltegravir	Maraviroc
Mechanism of action	inhibit HIV-1 protease (which cleaves the polypeptide products of the viral mRNA into functional parts \rightarrow assembly & maturation of new viruses)	Inhibit integration of viral genome in host cell DNA.	Inhibit binding and entry of the virus into immune cells.

Genital herpes:

	Antiviral drugs	Foscarnet
Examples:	Acyclovir Famciclovir Valacyclovir	
Mechanism of action:	Activation: Guanosine analogs. •Mono-phosphorylated by HSV thymidine kinase (TK) (not phosphorylated in uninfected cells → few adverse effects). They are further activated by host- cell kinases to the Triphosphates are (triphosphates substrates for viral DNA polymerase → incorporated into the DNA molecule → chain terminations) <u>MOA</u> : The enzyme thymidine kinase combines phosphate with nucleoside to form nucleotides which incorporate with DNA, Acyclovir will be converted by thymidine kinase to false nucleotide which block DNA synthesis by DNA polymerase, Acyclovir has no effect on cells that are not effected by virus.	Mechanism of action: Inhibition of Viral DNA polymerase and RNA polymerase and HIV reverse transcriptase Doesn't require activation by viral or human kinases clinical uses: Acyclovir- resistant HSV infection
Note:	Valaciclovir is the <u>pro-drug</u> of acyclovir.	Toxicity: • Nephrotoxicity
	Valaciclovir is converted into acyclovir by intestinal & liver enzymes resulting in improved bioavailability of acyclovir.	•Electrolyte disturbances that may cause seizures (hypocalcemia & hypomagnesemia

Hepatitis B:

interferon 2b&2a, Lamivudine, Adefovir, Telbivudine, Entecavir

Interferon 2b&2a	<u>T</u> elbivudine	<u>A</u> defovir
Glycoproteins normally synthesized by virally infected cells.	<u>T</u> hymidine analog	<u>A</u> defovir dipivoxil is a nucleotide analog
They have wide range of antiviral and antitumor effects		
MOA: Unclear but possibly act through: 1- Inhibition of viral penetration_translation	MOA: phosphorylated intracellularly to the triphosphate,	MOA: phosphorylated to adefovir diphosphate, which is then incorporated into viral DNA.
transcription, protein processing, maturation, and release	endogenous thymidine triphosphate for incorporation into viral DNA, where it serves to	This leads to termination of further DNA synthesis and prevents viral replication.
2- Enhanced phagocytic activity.	terminate further elongation of the DNA chain	
3- Increase proliferation and survival of cytotoxic T cells		

Lamivudine	Entecavir
Cytosine analog	Guanosine analog
Lamivudine must be phosphorylated	
by host cellular enzymes to the	** Entecavir is effective against
triphosphate (active) form	lamivudine-resistant strains of HBV
MOA: an inhibitor (HBV) DNA polymerase	MOA: Following intracellular phosphorylation to the triphosphate, it competes with the natural substrate, deoxyguanosine triphosphate, for viral reverse transcriptase.

Hepatitis C:

a combination of antivirals that can be used according to liver condition and type of hepatitis C virus, example:

Ribavirin : Competitive inhibition of IMP (inositol monophosphate) dehydrogenase \rightarrow inhibition of <u>guanine nucleotides synthesis</u>. Inhibition of viral RNA polymerase

HCV protease inhibitor $\rightarrow \downarrow \downarrow$ viral replication. <u>Toxicity:</u> photosensitivity & rash.	<u>NS3/4A Protease inhibitors</u> e.g. sime <u>previr</u>
Inhibition of HCV RNA-dependent polymerase. <u>Toxicity:</u> sofosbuvir (Sovaldi) \rightarrow headache & fatigue.	<u>NS5B polymerase inhibitors</u> a. Nucleoside (sofos <u>buvir</u>) b. Non-nucleoside (dasa <u>buvir</u>)
Inhibition of HCV NS5A replication complex (replicase) $\rightarrow \downarrow \downarrow$ viral replication.	<u>NS5A (replicase)inhibitors</u> e.g. daclata <u>svir</u> & ledipa <u>svir</u>