Orthopedics Detailed Dossier

2023 edition

æ

XXX

Ē

الا شامل لأسئلة سنوات حتى نهاية 2022 المصادر : سلايدات الدكاترة، بعض الملاحظات الى كتبتها خلال الدوام، موقع "Amboss" ^{ال} غير شامل للأناتومي (لأنه أحا الدوسية حتطلع فوق الألف) فمعاش عيني لا تنسى تراجع اناتومي لأنه بيجي بالامتحان أسئلة أناتومي مثلا شو اسم هاي العضلة، أسئلة السنوات على الأناتومي موجودة غير هيك شرح للأناتومي ما ضفت الملف مرتب حسب المواضيع تحت كل موضوع فيه ملاحظات الدكاترة وأسئلة السنوات ^{ال} أسئلة السنوات المكررة تم جمعها بسؤال واحد ووضع عدد مرات تكرار السؤال في هامش أعلى الصفحة من جهة اليمين أو على يسار السؤال · أي كتابة بصندوق يعتبر هامش للملاحظات عندي، الخيارات من عندي لأنه السؤال الإ معاني الألوان: المهم، ملاحظات أو إضافات كان ناقص، معلومات إضافية الكلام الي بلغتكم فيه بدوسيه الأشعة قائم برضو على هذا الملف وأي الملفات ثانية اشتغلتها ويا ريت بس هبل

Last update: 01/2023

Introduction to orthopedics

General principles of fractures

General principles of fractures

Fracture: Discontinuity of bone cortex

*****Etiology:

Traumatic (Most common cause): Direct vs Indirect

• Pathological (Osteoporosis, Bone tumors, Metastasis, Paget disease)

 $\circ \, \text{Stress}$

- Due to repeated minor loading or trauma
- Seen in military installations, ballet dancers, athletes
- Lower limbs more commonly affected than upper limbs
- Metatarsal bone are most common beside tibia and femur neck

Mechanism of injury in trauma

Direct trauma:

- \odot **Tapping**: target force acting on small area \rightarrow **transverse fracture**
- \circ Crush: large force acting on small area \rightarrow extensive soft tissue damage, and comminuted
- \odot **Penetrating**: large force acting on small area (velocity more important than mass) \rightarrow High velocity, Low velocity

Indirect trauma:

- Traction: avulsion fracture, patella, olecranon, and medial malleolus.
- Angulation: transverse or with triangular fragment. convexity under tension, concavity under compression.
- \odot Rotational: complete rotation around the circumference joined by vertical line.
- \odot Compression fracture: axial loading

Fracture classification

1. Anatomy

- Location: affected bone (proximal, distal)
- **Position**: diaphysis, metaphysis, epiphysis
- Growth plate involvement (pediatric fractures): Salter-Harris fractures

2. Extent

Complete, Incomplete (Seen in pediatric)

3. Fragmentation

 \odot Simple fractures, Comminuted fracture, Segmental fracture

4. Orientation

 \circ Transverse, Oblique, Spiral

5. Displacement

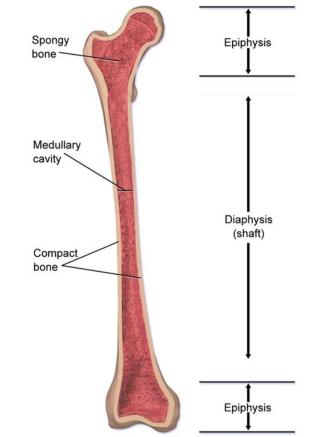
6. Soft tissue involvement

 \odot Closed fracture, Open fracture

Fracture classification – 1. Anatomy

Location: affected bone (proximal, distal)

*Position: epiphysis, metaphysis, diaphysis


- \odot Epiphysial fractures
 - Intraarticular: difficult reduction, joint stiffness and arthritis
 - Intracapsular: hemarthrosis that affects union, tamponade leads to pain and necrosis, blood supply

Metaphyseal fractures

- Good blood supply, Malunion rather than nonunion
- \odot Diaphyseal fractures
 - Proximal, middle, distal 1/3, Extra-articular, Easier to reduce and Better results, Non-union

Growth plate involvement (pediatric fractures):

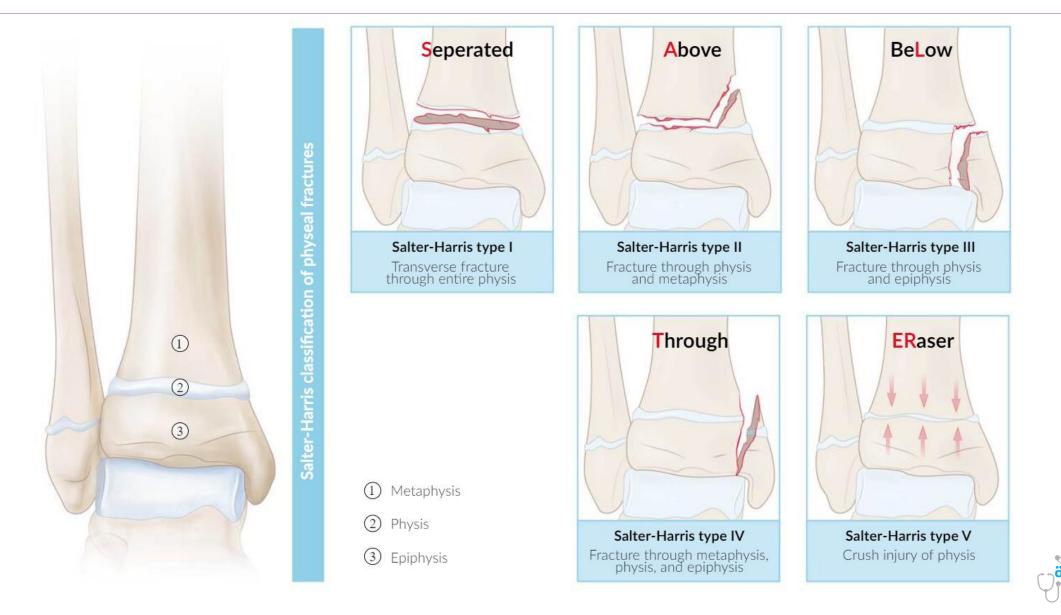
 \odot Salter-Harris fractures

Fracture classification – 1. Anatomy

AO principles: AO FOUNDATION • Epiphysial fractures

- 1. Anatomic reduction
- 2. Rigid stability
- 3. Soft tissue preservation and early ROM

\circ Metaphyseal fractures


- 1. Restoration of length ,alignment and rotation
- 2. Relative stability
- 3. Soft tissue preservation and early ROM

\odot Diaphyseal fractures

- 1. Restoration of length ,alignment and rotation
- 2. Relative stability
- 3. Soft tissue preservation and early ROM

Salter-Harris fracture classification

Salter-Harris fracture classification

Type I:

 Clinical diagnosis; X-ray usually normal or widening of physis thus can be missed (Order 2 limbs)

 \circ Excellent prognosis

*Type II:

 \circ Most common

 \odot Good prognosis

*Type III:

 $\circ \text{Intra-articular}$

 \odot Poor prognosis unless perfect reduction

Salter-Harris fracture classification

*Type IV:

- \odot All parts are involved
- Poor prognosis

*Type V:

- \odot Decreased physis width.
- \odot Can be missed as no fracture seen on Xray.
- \odot Diagnosed retrospectively.
- \odot Very poor prognosis as result of growth arrest.

وصف شكل الكسر على الصورة ما رجعت عدته ٧

- a. Type I
- b. Type II
- c. Type III
- d. Type IV
- e. Type V

- a. Type I
- b. Type II
- c. Type III
- d. Type IV
- e. Type V

- a. Type I
- b. Type II
- c. Type III
- d. Type IV
- e. Type V

- a. Type I
- b. Type II
- c. Type III
- d. Type IV
- e. Type V

Fracture classification – 2.Extent

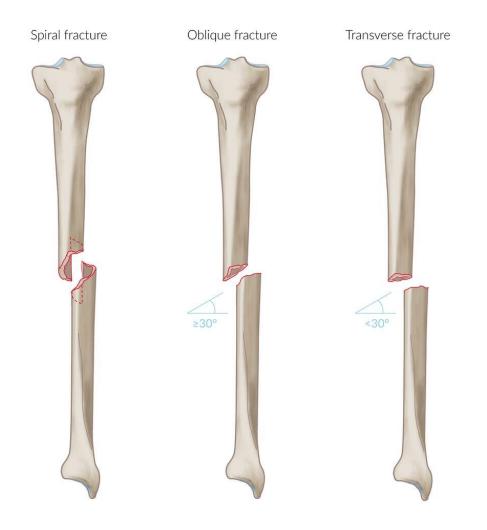
- In a complete fracture, there is discontinuity between the bone fragments, whereas in incomplete fractures the fracture line is either absent or does not completely traverse the width of the bone.
- Incomplete fractures are more common in pediatric patients due to the thicker, stronger periosteum and greater elasticity of growing bones.

*****Types of incomplete fractures include:

- Buckle (torus) fracture: A compressive force results in bulging ("buckling") of the cortex. Strictly speaking, this is a "buckle fracture" when there is bulging of only one side of the cortex (the concave side) and a "torus fracture" when the bulge is circumferential, but the terms are frequently used interchangeably.
- Greenstick fracture: There is discontinuity of the cortex and periosteum on the convex (tension) side of the fracture but only bending on the concave (compression) side.
- Bowing fracture (Plastic deformation): There is angulation but no discontinuity of the cortex or periosteum.

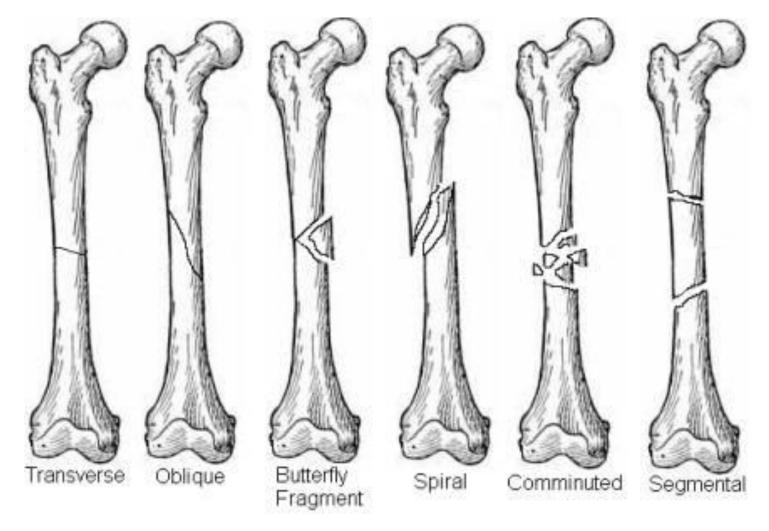
Fracture classification – 2.Extent

		Incomplete fractures		
Normal bone	Complete fracture	Buckle (torus) fracture	Greenstick fracture	Bowing fracture



Fracture classification – 3. Fragmentation

- Simple fractures: are fractures that only occur along one line, splitting the bone into two pieces
- Comminuted fracture: more than two fracture lines resulting in multiple bone fragments
- Segmental fracture: two fracture lines with a bone fragment between the proximal and distal portions of the bone


Fracture classification – 4. Orientation

- Transverse fracture: the fracture line runs at an angle of less than 30° to the bone's long axis
- Oblique fracture: the fracture line runs at an angle of more than 30° to the bone's long axis
- Spiral Fracture: A fracture where at least one part of the bone has been twisted. Two plans fracture

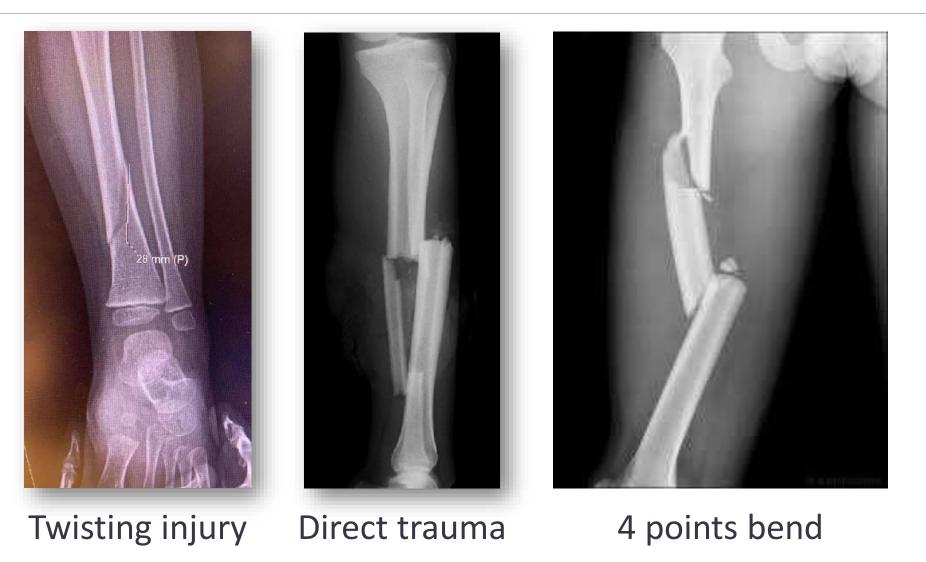
Fracture patterns

Fracture: Mechanism of trauma

- Transverse: Direct trauma or Indirect trauma
- Oblique: Indirect trauma
- Spiral: Twisting trauma
- Comminuted: Direct trauma

Note: Butterfly fragments are large, triangular fracture fragments seen commonly in comminuted long bone fractures.

What is the pattern of these fractures ?

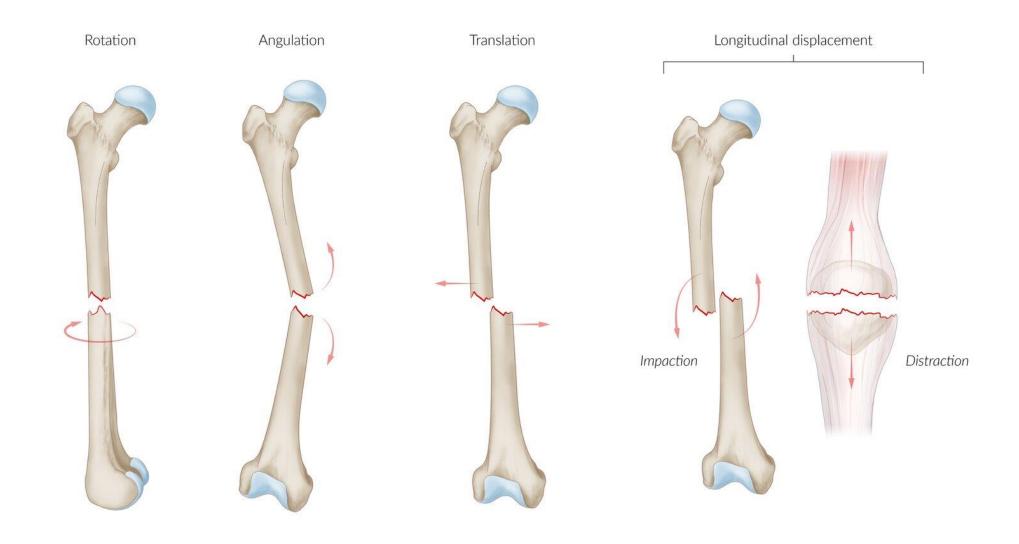

Fibula: Oblique Tibia: Transverse

Oblique fracture

Butterfly fracture Multifragmentary (Comminuted)

What is the mechanism of these fractures ?

سنو ات


Fracture classification – 5. Displacement

- Undisplaced
- Displaced
 - \odot <code>Rotated</code>: rotation around the longitudinal axis
 - \odot Angulated: angulation of the axis
 - Translated: lateral movement of the bone fragments
 - \odot Longitudinal displacement of bone fragments
 - Distraction: elongation
 - Impaction: shortening


Fracture classification – 5. Displacement

What is the most obvious deformity ?

Translation

Translation

Angulation

Translation

Translation

Fracture classification – 6.Soft tissue involvement

- Closed fracture: intact soft tissue; does not come into contact with the outside environment
- Open fracture: communicate between bone through traumatic wound to outer environment
 - O Management: 4As
 - 1. Analgesia
 - 2. Anti-tetanus
 - 3. Adequate irrigation and debridement within 4-8 hrs
 - 4. Antibiotic prophylaxis: first or second generation cephalosporine + aminoglycoside (high energy) + penicillin (barnyard).

Open wound

This patient came to ER after RTA, vasculature is intact, according to the management of this type of injury all of the following are true except:

- a. Anti-tetanus
- b. Intravenous 1st & 2nd generation cephalosporine
- c. Irrigation by normal saline
- d. Acute suturing & repair
- e. Analgesia

Case of RTA

What is your DDx ?

 \circ Open fracture

What is your management in ER ?

 Anti-biotic, anti-tetanus, analgesia, adequate irrigation

Gustilo and Anderson classification

- I : clean wound < 1 cm
- II : 1-10 cm without extensive soft tissue damage, skin flaps, or avulsion
- IIIA :>10 cm, extensive soft tissue damage or any high energy trauma, but maintains adequate coverage. No need for plastic or vascular surgeon
- IIIB : Periosteal stripping and bony exposure. Plastic surgeon for flap
- IIIC : vascular injury and vascular surgeon

Gustilo and Anderson classification

This patient came to ER after RTA, vasculature is intact, what is the stage of this case according to Gustilo Anderson ?

- a. Grade I
- b. Grade II
- c. Grade IIIA
- d. Grade IIIB
- e. Grade IIIC

Clinical features

Pain, redness, and swelling at the site of injury

 Can be the only sign of fracture in x-ray free cases (e.g., Scaphoid fracture, Greenstick, Salter-hares type 1)

- Attitude (the position taken by the patient)
- Deformity and axis deviation
- Bone fragments penetrating the skin
- Palpable step-off or gap
- Bone crepitus
- Concomitant soft tissue injuries
- Neurovascular compromise below the site of injury
- X-ray findings

Approach to fracture (Stable patient (2ry survey))

Clinical assessment

- 1. Pain management: Support (Splint the patient) + Analgesia
- Brief history: Profile, Chief complain, Mechanism of injury, Past medical & surgical
- 3. Physical exam: Lazy Fat Mice Suck
 - A. Look: Attitude
 - **B.** Feel: Assess for neurovascular compromise and compartment syndrome with the 6Ps: pain, pallor, pulselessness, paresthesia, paralysis, and poikilothermia
 - **C. Move**: Decreased range of motion
 - **D.** Special tests
- Imaging

 $\clubsuit Management: Reduction \rightarrow Fixation \rightarrow Early rehabilitation$

Notes

In multi-traumatic unstable patient, we stabilize the patient first. (1ry survey (ABCs))

Why do we ask about the mechanism of the trauma in the history ?

- Looking for associated injuries
- \odot For medicolegal purposes

Sensation exam to rule out nerve injury during physical assessment

- \odot Axillary: Over the deltoid
- \odot Musculocutaneous: Lateral forearm
- \odot Median: Tip of middle finger
- \odot Ulnar: Tip of little finger
- \odot Radial: Dorsum of the hand around the sniff box

Imaging

X-ray:

○ Rule of 2:

- 2 Absolute: 2 views, 2 Joints
- 2 Relative: 2 Occasions (e.g., Scaphoid fracture), 2 Limbs (i.e., in pediatrics)
- 2 Times: (pre-reduction and post-reduction)
- Radiographic signs of a fracture include a radiolucent fracture line, cortical disruption and presence of abnormal fat pad or elevation of fat pad
- Describe fracture based on the anatomic location, alignment, angulation, and articular involvement
- \odot X-ray imaging has a low sensitivity for detecting stress fractures.

CT/MRI (not routine):

 Indicated in inconclusive x-ray findings, assessment of associated injuries, and preoperative planning for complicated fractures

Management

Conservative fracture management

O Indications:

- Stable fractures
- Mainstay management of pediatric fractures
- Procedure: closed reduction and, if necessary, immobilization with a cast or splint of the fractured bone and adjacent joints

Surgical fracture management

 $\circ \textit{Indications}:$

- Open fractures
- Unstable fractures (e.g., intraarticular fractures, pelvic fractures)
- Severe displacements (e.g., rotational deformities) and displaced fragments
- Inadequate manual reduction and fixation

 Procedure: anatomic reduction of the fracture and subsequent fixation and immobilization using external fixation (pins or screws outside the skin), internal fixation (implants e.g., plates, screws, wires) or open reduction with internal fixation

Terminology

Reduction:

- Anatomical reduction: involves positioning and aligning the fragments of the broken bone to reconstruct the fractured bone as precisely as possible, so that the bone recovers to a form as close as possible to its original form as it heals.
- Functional reduction: restoring the fragments into such a position that normal function will occur following fracture union
- Closed reduction is the manipulation of the bone fragments without surgical exposure of the fragments.
- Open reduction is where the fracture fragments are exposed surgically by dissecting the tissues.

*****Fixation:

 \circ Absolute fixation: minimal callous formation \rightarrow used in intra-articular fractures \circ Relative fixation: callous formation \rightarrow used in diaphysis fractures

Healing calendar

Upper limb + Child : 3 weeks

Lower limb + Child : 3x2=6

Upper limb + Adult : 3x2=6

Lower limb + Adult : 3x2x2=12

Complications

*****Early (Acute) complications:

- Neurologic and vascular injury (e.g., bleeding, hematoma, seroma)
- o Compartment syndrome (most common in the anterior compartment of the leg)
- \odot Wound infection, osteomyelitis
- \odot Secondary dislocation
- \odot DVT, PE

*****Late (Long-term) complications:

- Delayed union (Epiphyseal Fx), Nonunion (Diaph. Fx), Malunion (Metaph. Fx)
- \circ Avascular necrosis
- \odot Chronic regional pain syndrome
- \circ Stiffness
- \circ Osteoarthritis
- \circ Infection

Special demographic fractures

*Elderly

- Increased age is associated with osteoporosis, rendering elderly persons more susceptible to fractures (Fragility fractures)
- Fragility fractures: pathological fractures that are caused by everyday activities or minor trauma
- \odot Common locations of major osteoporotic fractures:
 - Vertebral (most common) > femoral neck > distal radius (Colles fracture) > other long bones (e.g., proximal humerus)

Pediatrics

- \odot Elastic bone \rightarrow Bones tend to BOW rather than BREAK
- \odot Thicker periosteum \rightarrow functioning in reduction of fracture and fasten healing
- \circ Presence of the growth plate \rightarrow Salter-Harris fractures (physis fracture)
- \odot Pediatric Ligament stronger than bone \rightarrow Avulsion of the bone rather ran ligament tear

Complication of physis fracture

- The majority of physeal injuries heal quickly and recover fully.
- In a minority, growth disturbance or arrest may occur, and can result in deformity and impaired function.
- Growth disturbance factors
 - Involvement of growth plate with highest rate of growth: distal femur (50%) more than distal tibia 25%
 - \odot Late reduction
 - \odot Significant displacement
 - \odot Type of salter fracture
 - \odot Younger age (more time for growth so more shortening and deformity)

Pediatric fractures

MCQ (3) **Type of fracture:**

 \circ Buckle fracture

MCQ (2) * Management:

 \circ Cast only (for 2-3 wks)

Not the same picture

Pediatric fractures

(3) سنوات (3) Name of the defect:

 \odot Plastic deformation

(2) سنوات (2) Management:

- Acceptable angulation: immobilization with a cast
- Greater than acceptable angulation: closed reduction followed by immobilization with a cast

Same management as greenstick

What is the first step in management ?

- a. Open reduction
- b. Closed reduction
- c. Cast only
- d. Cast and X-ray after 10 days

Nerve injuries principles

Nerve injuries principles

* Mechanism

- o Ischemia
- \circ Compression
- Stretching (Traction)
- Laceration
- Crush : worst
- Burning

Negative Prognosis

- Older age • Proximal level of injury • Crush injuries
- Repair delay

Types of injury O Transient ischemia

• These changes are due to transient anoxia and leave no trace of nerve damage

• Neurapraxia

 Nerve contusion or stretch leading to reversible conduction block

Axonotmesis

 Incomplete nerve injury more severe than neurapraxia

○ Neurotmesis

 complete nerve division with disruption of endoneurium

Nerve injuries principles

	Neurapraxia	Axonotmesis	Neurotmesis
Pathophysiology	focal temporary demyelination of the axon	Axon and myelin sheath disruption leads to focal conduction block	All connective tissues disrupted
Wallerian degeneration	No Wallerian degeneration	Wallerian degeneration	Wallerian degeneration
	Axon remains intact	Endoneurium disrupted	All three layers disrupted
NCS	No fibrillation	Fibrillations and positive sharp waves on EMG	
Tinel's sign	Negative	Positive	Positive
Prognosis	recovery is excellent	Unpredictable recover	No recovery unless surgical repair performed
Examples	Saturday night palsy	After closed fractures and dislocations	Occurs in open wounds
Energy	Low energy injuries	High energy injuries	

Principles of treatment

Exploration surgery is indicated in

- \odot if the nerve was seen to be divided and needs to be repaired;
- if the type of injury (e.g., a knife wound or a high energy injury) suggests that the nerve has been divided or severely damaged;
- \odot if recovery is inappropriately delayed and the diagnosis is in doubt.

Treatment of open injuries

- 1. If the nerve is cleanly divided, end to end suture may be possible
- 2. Paring of the stumps with a sharp blade, and if this leaves too large gap, nerve mobilizing can be done to prevent tension
- 3. Nerve grafts can be used

*****It may be best to leave the injured nerve alone in case of

- \odot If the patient has adapted to the functional loss.
- \circ If it is high lesion, and re-innervation is unlikely to occur within the critical 2 years.
- \odot If there is pure motor loss which can be treated by tendon transfer

The Spine

Vertebral fractures

Vertebral fractures

Epidemiology

 Common in elderly women (osteoporotic fractures) and young men (traumatic injuries)

- \odot Location: \sim 50% in the cervical spine and \sim 50% in the thoracic, lumbar, and sacral spine
- Etiology: Osteoporosis (most common), Traumatic

Clinical features

- \odot Local pain on pressure, percussion, and compression
- \odot Palpable unevenness or disruption of the vertebral process alignment
- \odot Paravertebral hematoma
- \circ Weakness or numbness/tingling
- Neurogenic shock
- Depending on complications and any accompanying injuries, further symptoms, potentially as severe as paralysis, are possible

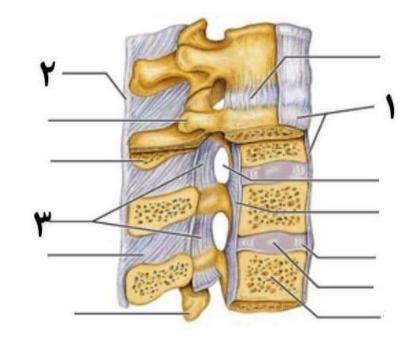
Stability of vertebral fractures

Stability depends on:

- $\ensuremath{\circ}$ Integrity of vertebral bodies
- Ligaments

Stable vertebral fracture

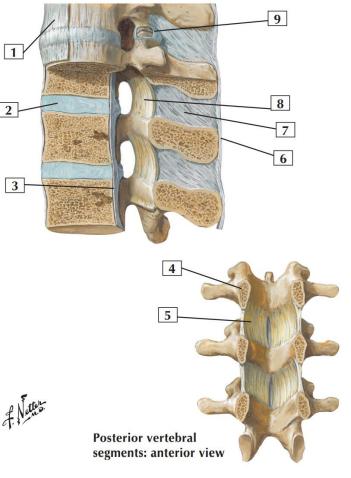
- \odot The structural stability of the spine remains intact.
- \circ No neurologic deficits
- \odot Fractures of the anterior column of the spine


Unstable vertebral fracture

- \odot The structural stability of the spine is compromised.
- \circ The spine can move as two or more independent units, which may cause spinal cord injury.
- \odot Mid-column and posterior column fractures
- A dorsal spine injury (vertebral arches, processes, and their ligaments) is always unstable and has a high probability of spinal cord injury.

Identify these tendons

- 1. Anterior longitudinal ligament
- 2. Supraspinous ligament
- 3. Ligamentum flavum



ىنوات (1)

Vertebral Ligaments: Lumbar Region

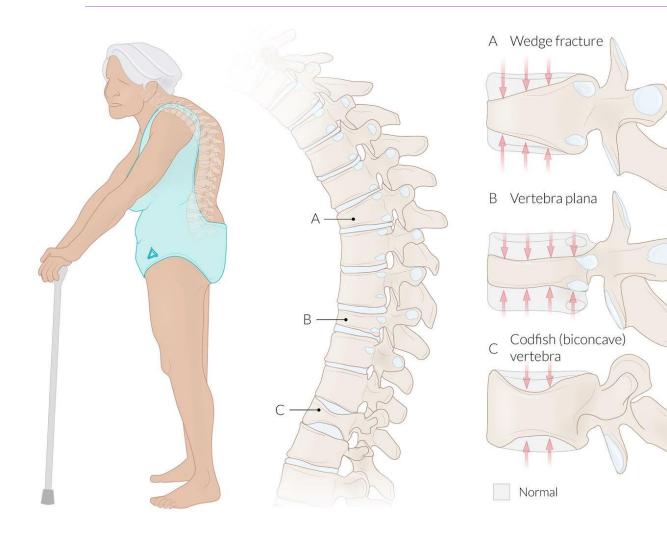
- 1. Anterior longitudinal ligament
- 2. Intervertebral disc
- 3. Posterior longitudinal ligament
- 4. Pedicle (cut surface)
- 5. Ligamentum flavum
- 6. Supraspinous ligament
- 7. Interspinous ligament
- 8. Ligamentum flavum
- 9. Capsule of zygapophysial joint (partially opened

Left lateral view (partially sectioned in median plane)

Types of vertebral fractures

Vertebral compression fracture (most common type)

- Causes: Pathological fractures, Trauma
- \odot Clinical features
 - Usually, stable
 - Often asymptomatic, but may cause acute back pain and point tenderness
 - Long-term findings after multiple vertebral compression fractures:
 - Progressive thoracic kyphosis, Decreased height


Burst fracture: fracture of the vertebra in multiple locations

 Result of compression trauma with severe axial loading
 Possible displacement of bone fragments into the spinal canal; except atlas

Fracture-dislocation: fractured vertebra and disrupted ligaments; instability may cause spinal cord compression

Compression fracture subtypes

- A. Wedge fracture: characterized by a loss of height, predominantly of the anterior part of the vertebral body. Wedge fractures are common in individuals with osteoporosis, and they can lead to a kyphotic deformity of the spine (gibbus) if multiple vertebrae are involved.
- B. Vertebra plana: an advanced compression fracture where there is a loss of height of the entire vertebral body, both anteriorly and posteriorly. Vertebra plana is also referred to as a pancake or coin-on-edge vertebra.
- C. Codfish vertebra: characterized by loss of height of the central part of the vertebral body, resulting in a biconcave vertebral body that resembles fish vertebrae.

Diagnostics

Physical exam

 Detailed neurologic exam (cranial nerves, motor and sensory components, coordination, and reflexes)

 \odot Rectal exam to assess sphincter activation

 In trauma scenarios, a secondary survey to assess for associated injuries should be done.

✤Imaging

 \circ Used to assess the stability of the fracture, spinal cord lesions

Anterior-posterior and lateral x-ray

- Discontinued cortex, bone fragments
- Loss of height in the vertebral bodies
- CT: The axial image in particular helps localize the fracture and allows for an assessment of (posterior edge) stability.

 \odot MRI: most sensitive tool for detecting spinal cord lesions

Treatment

Conservative treatment

 \odot Indication: stable fractures

• **Procedures**: Pain medication, Physical therapy, External bracing

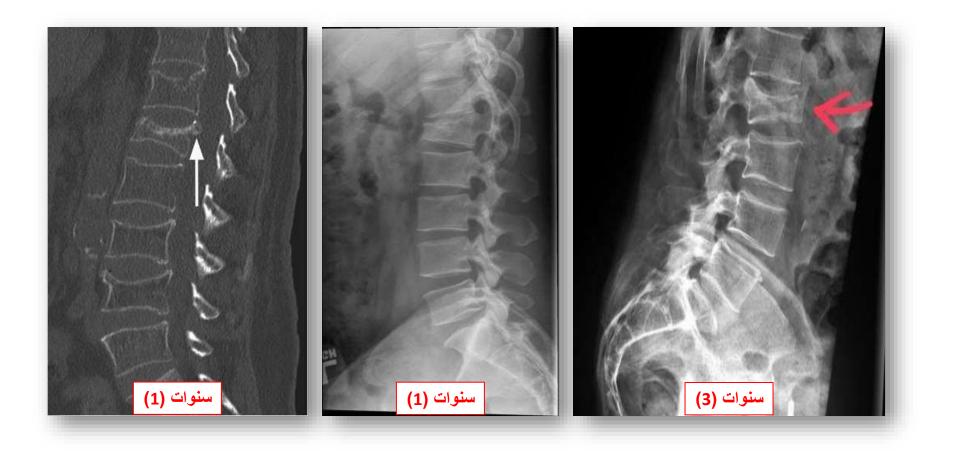
Surgical treatment

 \circ Spondylodesis

- Indications: unstable fractures and/or neurological symptoms
- Approach: fusion of two or more vertebral bodies via internal fixation

\odot Minimally invasive procedures

- Indication: stable vertebral compression fractures with progressive pain or kyphosis despite conservative treatment
- Procedures: Vertebroplasty, Kyphoplasty



Patient presented with low back pain

What is the type of fracture ?

 \circ Compression

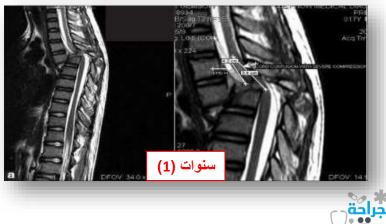
What does the pointer resemble

- a. L1 burst fracture
- b. L5 vertebral compressive fracture
- c. L1 vertebral compressive fracture
- d. Spondylolysis
- e. L1 disc prolapse

لوات (5)

Patient presented with bradycardia and hypotension

What type of shock is this ?


O Neurogenic shock

Insult \rightarrow Spinal shock \rightarrow Neurogenic shock

Spinal shock: flaccid paralysis, anesthesia, absent bowel and bladder control, and loss of reflex activity

♦ Neurogenic shock: ↓ Sympathetic → hypotension, bradycardia, vasodilation

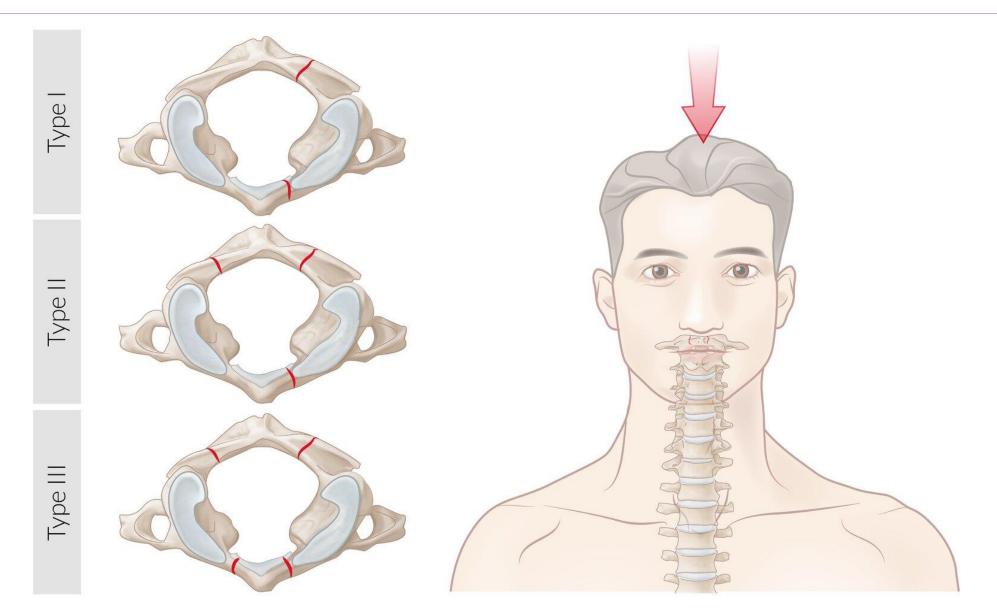
Vertebral fractures variants – Atlas fracture

Definition: fracture of the atlas (first cervical vertebra)

- Injury mode: axial force (e.g., swimming accident caused by jumping head-first into shallow water)
- \odot Jefferson fracture: combined fracture of the anterior and posterior arches

*Symptoms

- \odot Painful restriction of movement
- \odot Neck ache, paravertebral hematoma with dysphagia
- \odot Neurologic deficits, such as Horner syndrome
- \odot An asymptomatic course is also possible.


Diagnostics

- \odot Cervical spine x-ray: fractures and dislocations
- \odot CT: best for Jefferson fractures
- \odot Arteriography: in cases of vascular compromise

Treatment: immobilization for stable fractures; surgery for dislocations

Jefferson fracture

Vertebral fractures variants – Dens fracture

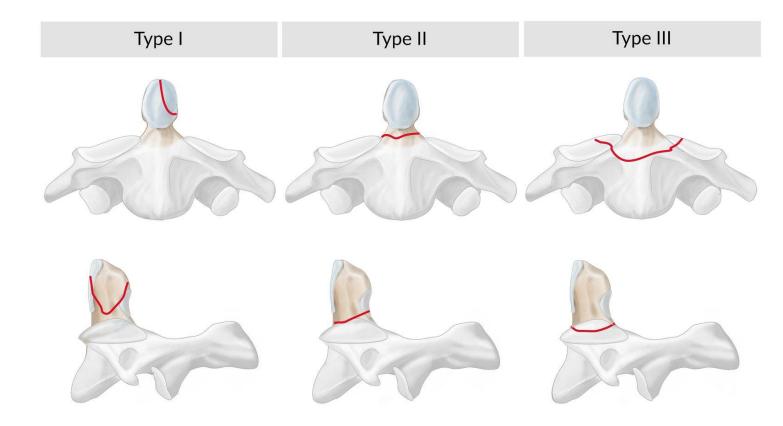
Definition: fracture of the dens axis (second cervical vertebral body)

Epidemiology: 10–15% of all cervical fractures

*Etiology

- Head or neck injury as a result of a fall or blunt trauma
- $\,\circ\,$ A contributing factor is loss of bone substance as a result of osteoporosis (mostly seen in elderly patients).

*Symptoms

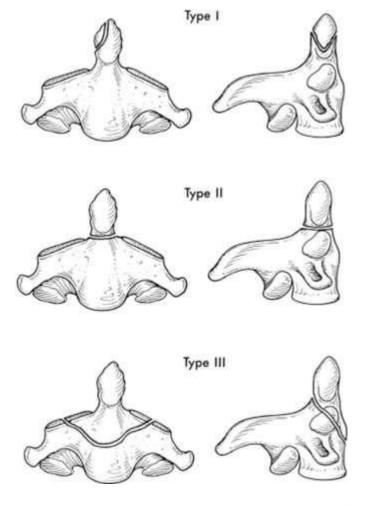

- $\,\circ\,$ Movement-induced pain
- $\,\circ\,$ Neurological problems ranging from local sensory loss to paralysis due to complete spinal cord injury

Specific forms: hangman's fracture

- $\,\circ\,$ Definition: bilateral fracture of the axis arch
- $\,\circ\,$ Etiology: trauma with hyperextension and distraction (e.g., car accident)
- Diagnostics: x-ray of the spinal cord to discern an atlantoaxial dislocation , CT, or MRI
- **Treatment**: immobilization for stable fractures, surgery for dislocations

Anderson's dens fracture classification

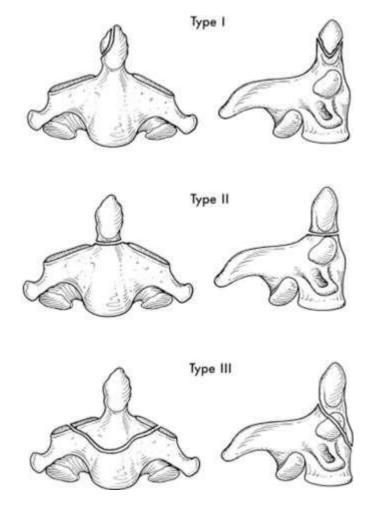
Type I: oblique fracture through the cranial part of the dens (stable)


Type II: fracture at the base of the dens (frequently unstable)

Type III: dens fracture and affected corpus axis (unstable)

Which type is more associated with non-union ?

- a. Type 1
- b. Type 2
- c. Type 3
- d. Type 4
- e. Type 5
- Non-union increases risk of AVN



سنوات (2)

Which type is more associated with AVN ?

- a. Type 1
- b. Type 2
- c. Type 3
- d. Type 4
- e. Type 5
- Non-union increases risk of AVN

Spondylolisthesis and Spondylolysis

Definitions

- Spondylolisthesis: anterior slippage of a vertebral body over the subjacent vertebra
- Isthmic spondylolisthesis (spondylolytic form): spondylolisthesis resulting from an abnormality in the pars interarticularis
- Degenerative spondylolisthesis: spondylolisthesis resulting from degenerative changes, without an associated disruption or defect in the vertebral ring
- Congenital spondylolisthesis: spondylolisthesis secondary to congenital anomalies (e.g., hypoplastic facets, sacral deficits, poorly developed pars interarticularis).

Spondylolisthesis

Epidemiology

- Most common in children and adolescents < 18 years (congenital and isthmic spondylolisthesis) and adults aged > 50 years (degenerative spondylolisthesis)
- \circ Sex: $\sigma > \varphi$ (congenital and isthmic spondylolisthesis); $\varphi > \sigma$ (degenerative spondylolisthesis)
- Defect most commonly occurs in the lumbar spine (typically L5-S1 in isthmic spondylolisthesis, L4-L5 in degenerative spondylolisthesis)

*****Risk factors include:

- Congenital malformation (dysplasia or hypoplasia) of the lumbosacral joints in L5–S1
 - Repetitive hyperextension and rotation movements at L5–S1
 - Commonly associated with gymnastics, swimming, and weightlifting
- Spondylolysis: lytic defect in the pars interarticularis, permitting forward slippage of the superjacent vertebra
 - Leads to isthmic spondylolisthesis if spondylolysis is bilateral
 - Scheuermann disease can be the underlying cause of spondylolysis or spondylolisthesis
- $\,\circ\,$ Degenerative disease: most commonly in the elderly at L4–L5
- \circ Trauma
- Local or systemic pathology (e.g., tumor, Paget's disease, osteogenesis imperfecta, TB)

Spondylolisthesis – Clinical features

- Asymptomatic (majority of patients)
- Acute or chronic lumbar pain that worsens with activity and/or with spine extension
- Gait problems (e.g., waddling gait)
- Possible physical examination findings

 $\circ \, \text{Spine}$

- Reduced lumbar range of motion and reduced lumbar lordosis
- Step-off sign (seen in advanced stages)
- Procedure: Observe and palpate the spinous processes to identify any slippage of the vertebrae.
- Positive sign: visible or palpable step-off sign at the lumbosacral area
- \circ Lower limbs
 - Tight, contracted hamstring muscles
 - Weakness and atrophy in lower legs; reduced sensation and reflexes
 - Straight leg raise test: A positive test indicates lumbar radiculopathy.

Spondylolisthesis – X-ray lumbosacral spine

Indications: initial test for all patients in whom spondylolisthesis is suspected

*****Views

- $\,\circ\,$ Lateral, PA, and oblique
- Dynamic flexion-extension (lateral view): Consider performing to assess for spinal instability.
- Supportive findings: anterior vertebral displacement (anterolisthesis)
 - L4 over L5: most common in degenerative spondylolisthesis
 - $\,\circ\,$ L5 over S1: most common in isthmic spondylolisthesis

Additional findings

- Degenerative changes, e.g., disk space narrowing, vacuum phenomenon, endplate sclerosis
- $\,\circ\,$ Spondylolysis: in the isthmic form
 - Scottie dog with a collar sign
 - High-grade spondylolisthesis of L5 over S1 due to bilateral spondylolysis (inverted Napoleon hat sign)
- $\,\circ\,$ Spinal instability

Scottie dog with a collar sign

Spondylolisthesis – Additional imaging studies

Order to assess for spinal stenosis and impingement of nerve roots in patients with signs of neurological involvement.

Indications

 \odot Clinical features of radiculopathy or myelopathy

Suspected underlying condition (e.g., metastatic disease)

Suspected cauda equina syndrome (i.e., bladder or bowel complaints)

*Options

 \circ First-line: MRI lumbosacral spine

 \circ Second-line

- CT myelography or CT lumbosacral spine
- For patients with contraindications to MRI; can also be used as a guide to surgical treatment

Spondylolisthesis – Treatment

Conservative treatment

 $\circ \text{ Indications}$

- Initial treatment for patients with low-grade slippage and no significant neurological involvement
- Consider as initial treatment for high-grade degenerative spondylolisthesis with no significant neurological involvement
- \circ General recommendations
 - Physical therapy, Physical activity restriction, Management of comorbidities

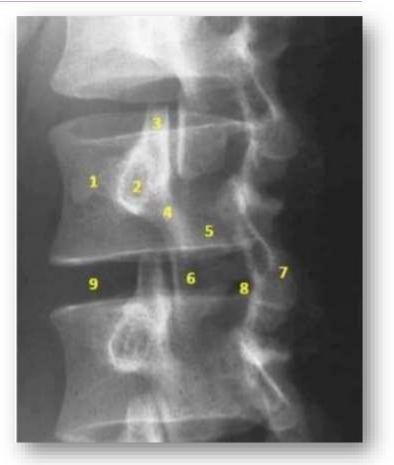
○ Pain management

Surgical treatment

 \odot Common indications

- High-grade spondylolisthesis (Meyerding classification grades ≥ III)
- Significant neurogenic claudication or radiculopathy
- Progressive or persistent symptoms (e.g., after 3–6 months) despite conservative treatment
- Traumatic spondylolisthesis and spinal instability
- Bladder or bowel symptoms

 \odot Treatment options: Vertebral fusion: standard procedure


سنوات (6)

Spondylolysis

What is your diagnosis ? • Spondylolysis

What test should we do?

 \circ 1-Leg hyperextension test

Scottie dog with a collar sign

Female has lower back pain 1 month duration

X Ray was done, what type of spondylolisthesis she is at risk to have ?

- a. Post-trumatic spondylolisthesis
- b. Isthmic spondylolisthesis
- c. Degenerative spondylolisthesis
- d. Pathological spondylolisthesis
- e. Post–Surgical spondylolisthesis

Scottie dog with a collar sign

 Spondylolysis leads to isthmic spondylolisthesis if spondylolysis is bilateral

Spondylolisthesis

What is your diagnosis

 \odot Spondylolisthesis

Female has history of <u>Spondylolysis</u>

What is your diagnosis ?

- a. Post-trumatic spondylolisthesis
- b. Isthmic spondylolisthesis
- c. Degenerative spondylolisthesis
- d. Pathological spondylolisthesis
- e. Post–Surgical spondylolisthesis
- Spondylolysis leads to isthmic spondylolisthesis if spondylolysis is bilateral

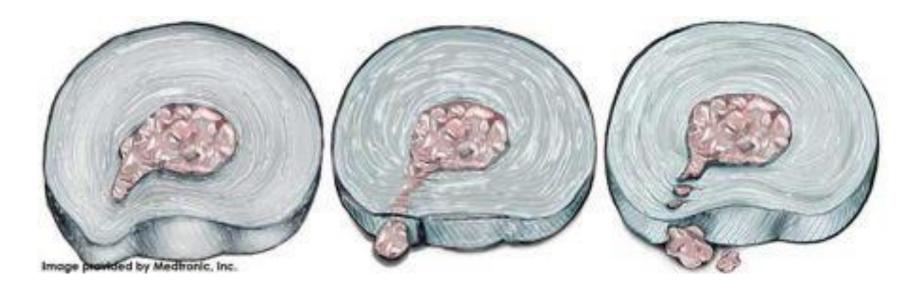
What is your diagnosis

- a. L4-L5 spondylolisthesis
- b. L5-S1 spondylolisthesis
- c. L5-S1 spondylolysis
- d. S1-S2 spondylolisthesis
- e. S1-S2 spondylolysis

سنوات (3)

What is your diagnosis

- a. L4-L5 spondylolisthesis
- b. L5-S1 spondylolisthesis
- c. L5-S1 spondylolysis
- d. S1-S2 spondylolisthesis
- e. S1-S2 spondylolysis



Degenerative disk disease

Degenerative disk disease

Classifications Of Herniations

- Disk protrusion: protrusion of the vertebral disk nucleus pulposus through the annulus fibrosus (intact)
- Disk herniation (disk extrusion or disk prolapse): complete extrusion of the nucleus pulposus through a tear in the annulus fibrosus
- Disk sequestration: extrusion of the nucleus pulposus and separation of a fragment of the disk

Degenerative disk disease

Epidemiology

- \circ Age: most common at 30–50 years
- \circ Sex: $\sigma > \varphi$
- \odot Cervical and thoracic disk herniations: rare
- \odot Lumbosacral disk herniation
 - L5–S1 (most common site)
 - L4–L5 (second most common site)

Intervertebral disks usually protrude/herniate posterolaterally, as the posterior longitudinal ligament is thinner than the anterior longitudinal ligament.

Degenerative disk disease – Clinical features

Asymptomatic and detected incidentally

Acute onset of severe neck or back pain

• Radicular pain: pain that radiates to the legs (sciatic pain) or arms

 \odot The pain is either stabbing in nature or resembles an electric shock

Features of radiculopathy: lower motor neuron signs of the affected nerve root (typically unilateral)

 \odot Paresthesia of the affected dermatome

 \odot Muscle weakness and atrophy of the related myotome

 \odot Absent or diminished deep tendon reflexes

Features of compressive myelopathy (typically bilateral) or cauda equina syndrome

 \odot Paresthesia below the level of compression

 \circ Motor deficits

Overview of cervical radiculopathies

Overview of cervical radiculopathies ^[9]						
Radiculopathy	Causative disk	Sensory deficits 忍	Motor deficits	Reduction of reflexes		
C3/4 radiculopathy	• C2-C4	Shoulder and neck area	Scapular winging	• None		
C5 radiculopathy	• C4-C5	Anterior shoulder	Biceps and deltoid	Biceps reflex		
C6 radiculopathy	• C5-C6	 From the upper lateral elbow over the radial forearm up to the thumb and radial side of index finger 	 Biceps and wrist extensors 	 Biceps reflex Brachioradialis reflex 		
C7 radiculopathy	• C6-C7	 Palmar: fingers II-IV (II ulnar half, III entirely, IV radial half) Dorsal: medial forearm up to fingers II-IV 	 Triceps, wrist flexors, and finger extensors 	• Triceps reflex		
C8 radiculopathy	• C7-T1	 Fingers IV (ulnar half) and V, hypothenar eminence, and ulnar aspect of the <u>distal</u> forearm 	Finger flexors	• None		

Overview of lumbosacral radiculopathies

Radiculopathy	Causative disk	Sensory deficits 🐼	Motor deficits	Reduction of reflexes
L3 radiculopathy	• L2-L3	 Anterolateral area of the thigh (=) 	 Hip flexion Knee extension Hip adduction 	 Adductor reflex Patellar reflex
L4 radiculopathy	• L3-L4	 Anterolateral thigh, area over the patella, medial aspect of the leg, medial malleolus 	<u>Knee extension</u><u>Hip adduction</u>	Patellar reflex
L5 radiculopathy	• L4-L5	 Lateral aspect of the thigh and knee, anterolateral aspect of the leg, dorsum of the foot, and the big toe 	 Tibialis anterior muscle (foot dorsiflexion): difficulty heel walking (foot drop) Extensor hallucis longus muscle (first toe dorsiflexion) 	 Posterior tibial reflex (medial hamstring)
S1 radiculopathy	• L5- <u>S1</u>	 Dorsolateral aspect of thigh and leg, and the lateral aspect of the foot 	 Peroneus longus and brevis muscle (foot eversion) and gastrocnemius muscle (foot plantarflexion): difficulty toe walking 	 Achilles reflex = Lateral hamstring reflex
S2 radiculopathy, S3 radiculopathy, S4 radiculopathy	• <u>\$1-\$4</u>	 Posterior aspect of the thigh and leg (S2), perineum (S3–S4), perianal (S4) 	• None	 Bulbocavernosus reflex Perineal reflex

Diagnostics

1. Perform clinical evaluation focusing on red flags for acute back pain

- O Patient characteristics: Age < 18 or > 50 years, Immunosuppression
- History of cancer, unexplained weight loss, abdominal aortic aneurysm, bacterial infection, spinal anesthesia, spinal surgery, or significant trauma
- Medications: Long-term steroids, Anticoagulants, IV drugs
- Signs of cord compression syndromes: (Motor weakness, Paresthesia or anesthesia (including saddle anesthesia), Bladder, bowel, or sexual dysfunction)

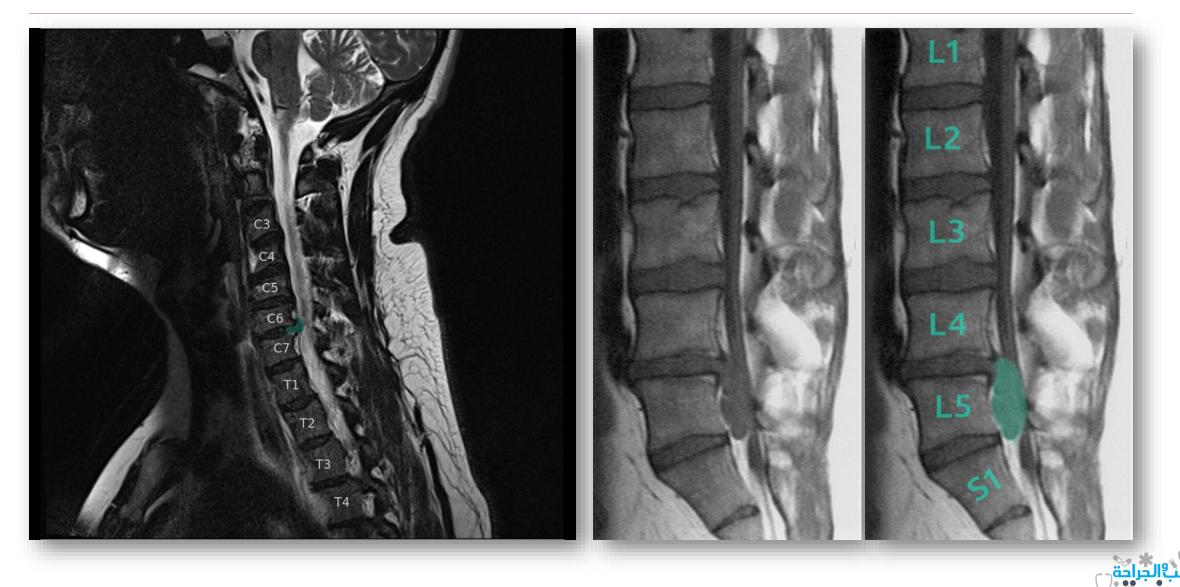
2. Determine the need for imaging

بسألوا عنها بالراوندات

Red flags for acute back pain: MRI spine without IV contrast is preferred
 No red flags for acute back pain: Urgent imaging is typically not required

MRI spine without IV contrast

Indications


 preferred initial imaging modality for suspected radiculopathy, myelopathy, or cauda equina syndrome

Supportive findings

- Disk degeneration: sclerosed, dehydrated disk that appears hypointense on T2-weighted images
- Disk prolapse/herniation: herniation of disk tissue with surrounding edema
- Evidence of impingement/compression of a spinal nerve or the spinal cord may be visible, e.g.:
 - Focal narrowing of the spinal canal
 - Compression of the thecal sac
 - Edema of the spinal cord (appears hyperintense on T2weighted images)

MRI spine without IV contrast

Treatment

* Approach

- o Identify and treat compressive spinal emergencies immediately, if present
- \odot For isolated radiculopathy without any red flags for acute back pain:
 - Initiate conservative management
 - Urgent imaging is typically not required

Conservative management

Physiotherapy, Continuation of daily activities (minimize bed rest), Analgesics

Surgery

$\circ \text{ Indications}$

- **Urgent**: significant or progressive neurological deficits, bowel or bladder incontinence, compressive spinal emergencies
- Elective: persistent or progressive radiculopathy despite conservative management
- Procedure: diskectomy (Surgical removal of the herniated portion of the intervertebral disk)

Spinal canal stenosis

Spinal canal stenosis

Definition: Narrowing of the spinal canal due to hypertrophy at the posterior disc margin and the facet joints

Epidemiology

- \odot Lumbar stenosis is the most common form of spinal stenosis
- \odot Cervical stenosis affects 1–2 individuals per 100,000 population.
- \odot Thoracic stenosis is rare.
- \odot Age range: middle-aged and elderly population

*Etiology

Degenerative joint disease (most common)

- Spondylolisthesis, Disk space narrowing, Facet joint hypertrophy
- \odot latrogenic: following spinal surgery such as laminectomy
- Systemic disease: Paget disease, ankylosing spondylitis, tumors
- \odot Others: e.g., trauma, calcification of the ligamentum flavum

Spinal canal stenosis – Clinical features

Lumbar spinal stenosis

- \odot Load-dependent lower back pain that worsens with walking
- Neuropathic claudication: a group of neuropathic symptoms affected by postural changes
 - Unilateral or bilateral gluteal, thigh, and calf pain
 - Worsens with lumbar extension (e.g., walking, prolonged standing)
 - Relieved by lumbar flexion (e.g., sitting, laying down, cycling)
- Unsteady wide-based gait
- \odot Reduced lower extremity reflexes
- \odot Mild motor weakness and sensory changes may be present.
- \odot Abnormal Romberg test

Spinal canal stenosis – Clinical features

Cervical spinal stenosis

- $\circ \, \text{Neck pain}$
- \odot Gait and balance disturbances
- \odot Increased urinary frequency or incontinence
- \odot Upper motor neuron signs below the level of stenosis
- \odot Lower motor neuron signs at the level of stenosis
- Sensory abnormalities: pain, paresthesia, and/or anesthesia at or below the level of stenosis; Lhermitte sign

Thoracic spinal stenosis

- \odot Unilateral or bilateral lower limb paresthesia and pain
- \odot Bladder, bowel, and/or sexual dysfunction
- \odot Radicular pain around the chest or abdomen
- \odot Upper motor neuron signs in the lower limbs

Spinal canal stenosis – Imaging

MRI spine without IV contrast

- Preferred modality in symptomatic patients
- \circ Findings
 - Evidence of spinal stenosis: Narrowing of the spinal canal, compression of the spinal cord and/or nerve root impingement
 - Evidence of the underlying etiology (e.g., degenerative disk disease, facet joint hypertrophy, ligamentous hypertrophy)

X-ray spine

\circ Indications

- Routine first-line modality for acute back pain in individuals with no neurological abnormalities
- Suspected vertebral fracture

○ Findings: evidence of the underlying etiology (e.g., degenerative joint changes)

Spinal canal stenosis – Treatment

Lumbar spinal stenosis

$\hfill \bigcirc \textbf{Conservative management}$

- Indication: Mild or moderate symptoms: conservative management with analgesia and physiotherapy
- First-line: NSAIDS, Physiotherapy
- Second-line: image-guided epidural steroid injection

$\circ \, \text{Surgery}$

- Indications: Severe lumbar stenosis, moderate lumbar stenosis with insufficient response to conservative therapy or patients who elect to undergo surgery
- Surgical options: Laminectomy, Laminotomy

Cervical and thoracic spinal stenosis

- Surgery (decompression with or without vertebral fusion) is preferred in most cases because of the risk of severe neurological symptoms without surgical treatment
- Conservative management (NSAIDs and/or physiotherapy) may be considered in patients with mild stenosis

سنوات (10)

Lumbar canal stenosis

A case of patient had lumbar canal stenosis (this information was not written in the question), according to difference between vascular and neurological claudication choose the true answer

a. Downhill more painful

(the other choices were the features of vascular claudication)

Neurogenic Vs Vascular claudication

Symptoms	Neurogenic	Vascular
Back Pain	Common	Uncommon
Pain Relief	Sitting or flexed posture Standing and resting usually insufficient Often slow (>5 mins)	Not positional Pain relief while standing Almost immediate
Ambulatory tolerance	Variable	Fixed
Uphill vs. Downhill	Downhill more painful (extended posture)	Uphill more painful
Bicycle ride	No pain	Pain

What is your diagnosis ?

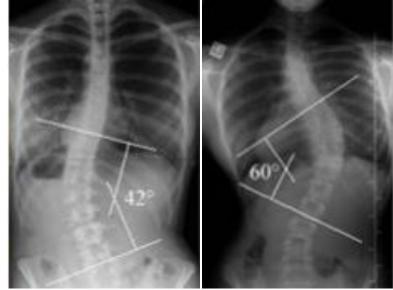
a. Lumbar canal stenosis

Disk herniation Vs Canal stenosis

Spinal disc herniation

Spinal canal stenosis

Scoliosis


Scoliosis

* Definitions

- Lateral curvature (Cobb angle > 10°) and simultaneous rotation of the vertebrae
- It is a triplanar deformity with lateral, anteroposterior and rotational components
- Levoscoliosis: Describes a spinal curve to the left;
 Common in lumbar spine
- Dextroscoliosis: Describes a spinal curve to the right
 - Usually in the thoracic spine
 - This is the most common type of curve
 - Forming either c shape or s shape

Epidemiology

- Patients usually present between the age of 10 and 15
- Mostly occur in female

Levoscoliosis Dextroscoliosis

- The vertebrae that make up the curve are always rotated around the vertebral axis
- the bodies point to the convexity. And the spinous processes to the concavity of the curve

Scoliosis types

Postural type

- Secondary or compensatory to some condition outside the spine, such as a short leg or a pelvic tilt due to contracture of the hip.
- Local muscle spasm associated with a prolapsed lumbar disc may also cause a skew back.
- When the patient sits (thereby cancelling leg length asymmetry) or bend forward (adam's test) the curve disappears.
- It can become structural if it exceed a certain point
- 2 dimensional "Diplaner" (AP only)

Structural type

- Non-correctable deformity of the affected spinal segment
- Rib hump on bending forward
- The deformity is liable to increase throughout the growth period. curves greater than 50 degrees may go on increasing by 1 degree per year
- Very severe curves (angle >70-80 degree) accompanied with chest deformity and cardiopulmonary dysfunction

Types of structural scoliosis

- Idiopathic scoliosis (80%)
 - \odot Infantile (0-3 years old)
 - \odot Juvenile (4-9 years old)
 - Adolescent (10 years to maturity)
- Osteopathic scoliosis: due to congenital vertebral anomalies
- Neuropathic scoliosis: due to asymmetrical muscle weakness (e.g., In poliomyelitis or cerebral palsy).
- Myopathic scoliosis: in muscular dystrophies.
- Neurofibromatosis.

Types of structural scoliosis – Idiopathic scoliosis

Infantile idiopathic scoliosis

 \odot Only type whose most common curve pattern is left thoracic

 \odot Only type that is more common in males

Only type to resolve spontaneously (90%)

Juvenile idiopathic scoliosis

Most common curve pattern is a right thoracic curve
 More common in female. 50% resolve spontaneously
 High rate of progression, and need for surgery

Adolescent idiopathic scoliosis

- \odot The most common type of scoliosis overall
- \odot Present before puberty and progresses until skeletal growth ceases

Types of structural scoliosis cont.

Osteopathic (congenital) scoliosis

• The commonest bony cause is some type of vertebral anomaly:

• Hemivertebra, wedged vertebra (failure of formation), fused vertebrae, fractures, bone softening (rickets or osteogenesis imperfecta)

 \odot More aggressive and need early surgery

Neuropathic and myopathic scoliosis

• Causes: Poliomyelitis, cerebral palsy, Syringomyelia, Friedreich's ataxia

 \odot Also aggressive and bracing may fail, need surgery

Scoliosis and neurofibromatosis

- \circ 1/3 of patients with neurofibromatosis develop spinal deformity
- Accompanied by skin lesions, multiple neurofibromata and bony dystrophy affecting the vertebrae and ribs

In a 23 years old this was an incidental finding

What is the underlying etiology ?

- a. Idiopathic
- b. Infantile
- c. Syndromic
- d. Congenital
- e. Neuropathic

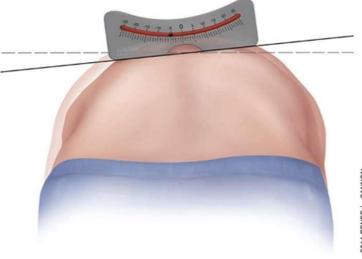
سنوات (3)

Diagnostics

Screening

 Adams test: deviation when the patient bends forward, used as a screening test in schools along with scoliometer

Scoliometer: if the angle below 7 normal, above
 7 need further investigations


Plain X-ray

- Full-length PA and lateral x-rays of the spine and iliac crests must be taken with the patient erect
- PA x-ray shows asymmetry in vertebra at the apex of the curve or vertebral rotation

CT and MRI needed in

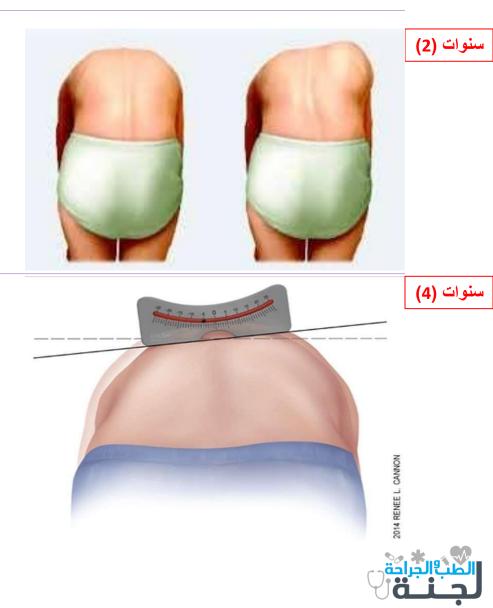
 Pain, Big curves > 50, Rt thoracic curve, Abnormal neurological examination

Scoliosis Screening

What is this deformity ?

 \circ Scoliosis

What is the name of this test ?


Bending forward test (Adams test)

What is the name of this test ?

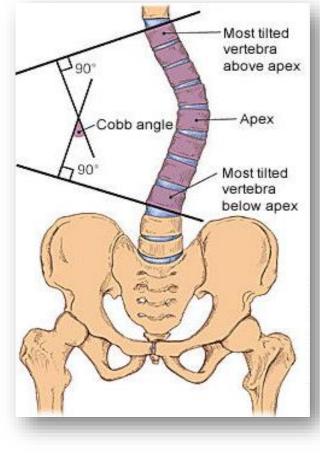
 \circ Scoliometer

This test is used for

 \circ Screening

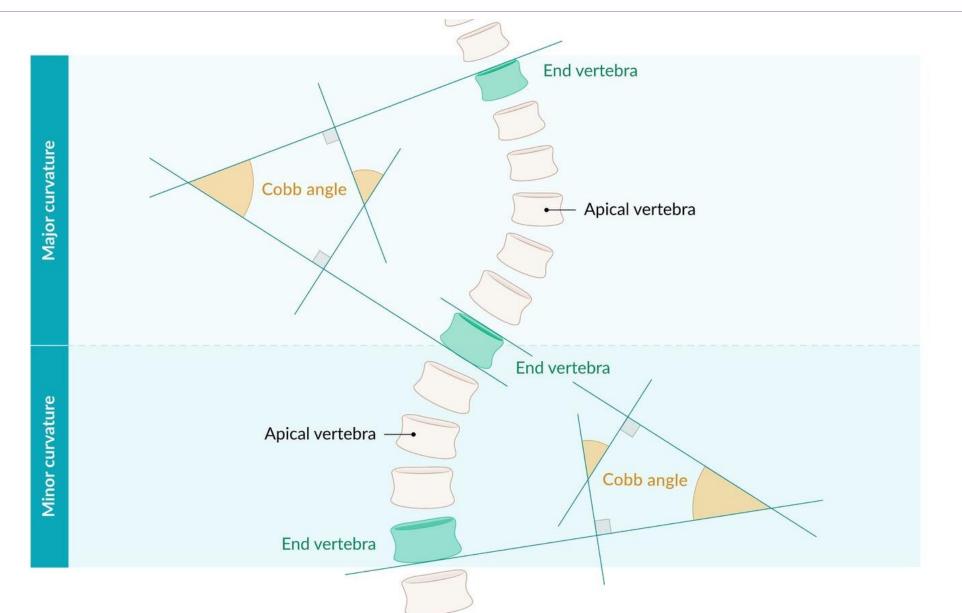
Cobb angle

Cobb angle for measuring the spinal curvature


- \odot Choose the most tilted vertebrae above & below apex of the curve.
- Angle between intersecting lines drawn perpendicular to the top of the superior vertebrae and bottom of the inferior vertebrae is the Cobb angle

Interpretation

- o Secondary curve (compensatory): <25 degree</p>
- o Primary curve: >25 degree


Treatment:

- \odot <25 degree: conservative/ follow up
- \odot 25-45 degree: bracing and also depend on Risser's sign

Cobb angle

Risser's sign

- Ossification of iliac crest starts laterally and proceeds medially toward sacrum
- Risser staging is based on iliac crest apophysis ossification
 - \odot Type 1 = ossification of lateral 25%
 - \circ Type 2 = lateral 50%
 - \circ Type 3 = lateral 75%
 - \circ Type 4 = lateral 100%
 - \circ Type 5 = fusion of ilium
- This is important because the curve often progresses most during the period of rapid skeletal growth and maturation
- Once the iliac crests are completely ossified (14-16 year) further progression of the scoliosis is minimal

What is the name of this classification ? (5)
O Risser's staging

Prognostic factors

*****Mention 2 prognostic factors:

Cobb's angleRisser's staging

What is the most important prognostic factor ?

Risser's staging (Ossification of iliac apophysis)

Treatment

Treatment based on the Cobb angle

Cobb angle < 10°: per definition not scoliosis, and therefore not monitored

 \odot Cobb angle 10–19°: continual monitoring for progression

 \odot Cobb angle 20–29°: monitoring or bracing

 \odot Cobb angle 30–39°: bracing

 \odot Cobb angle > 40° or rapidly progressing scoliosis: surgery

*Bracing

 \odot 18 hours/day, if possible

 \odot Bracing is usually able to halt progression but cannot cure the underlying condition.

Surgery

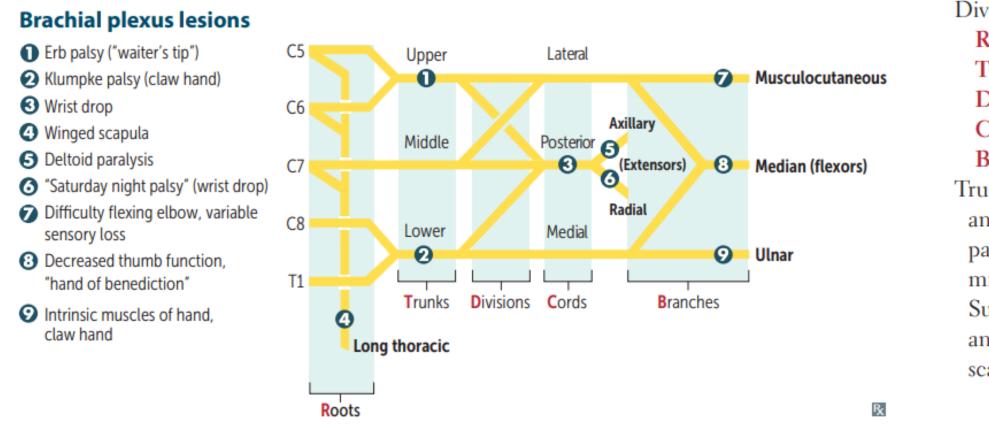
- \odot Goal: correct spinal arching and rotation
- Various surgical techniques and approaches exist (ventral, lateral, dorsal, or combined approach).
- \odot Spondylodesis: fusion of the vertebrae by bridge plating or by internal fixation
- \odot Risks: paraplegia (< 1% of cases), development of pseudarthroses, infection of surgical material

Scoliosis MCQ

➢In a 19 years old female patient this was an incidental finding, she was diagnosed with idiopathic scoliosis, and she is complaining only of deformity

How is it managed ?

- a. Conservative without follow up
- b. Bracing
- c. Arthrodesis
- d. Complete spine MRI
- e. Conservative + follow up every 6 months for the second two years


As the patient is 19Y/O and there is no complications there is no need for surgery, BUT she must be followed up until the complete ossification of the iliac crest apophysis (Risser's staging) which occur at age of 21 and thus we follow her for the following 2 years every 6 months

The Upper Limb

Brachial plexus

Brachial plexus

Divisions of brachial plexus: Remember To Drink Cold Beer Trunks of brachial plexus and the subclavian artery pass between anterior and middle scalene muscles. Subclavian vein passes anteromedial to the scalene triangle.

Nerves of the upper limb:

Axillary, Musculocutaneous, Radial, Median, Ulnar

CONDITION	INJURY	CAUSES	MUSCLE DEFICIT	FUNCTIONAL DEFICIT	PRESENTATION
Erb palsy ("waiter's tip")	Traction or tear of upper trunk: C5-C6 roots	Infants—lateral traction on neck during delivery Adults—trauma leading to neck traction (eg, falling on head and shoulder in motorcycle accident)	Deltoid, supraspinatus	Abduction (arm hangs by side)	
			Infraspinatus, supraspinatus	Lateral rotation (arm medially rotated)	
			Biceps brachii Herb gets DIBs on tips	Flexion, supination (arm extended and pronated)	
Klumpke palsy	Traction or tear of lower trunk: C8-T1 roots	Infants—upward force on arm during delivery Adults—trauma (eg, grabbing a tree branch to break a fall)	Intrinsic hand muscles: lumbricals, interossei, thenar, hypothenar	Claw hand: lumbricals normally flex MCP joints and extend DIP and PIP joints	
Thoracic outlet syndrome	Compression of lower trunk and subclavian vessels, most commonly within the scalene triangle	Cervical/ anomalous first ribs (arrows in A), Pancoast tumor	Same as Klumpke palsy	Atrophy of intrinsic hand muscles; ischemia, pain, and edema due to vascular compression	A CS C6 C7 T1 *
Winged scapula	Lesion of long thoracic nerve, roots C5-C7 ("wings of heaven")	Axillary node dissection after mastectomy, stab wounds	Serratus anterior	Inability to anchor scapula to thoracic cage → cannot abduct arm above horizontal position B	B

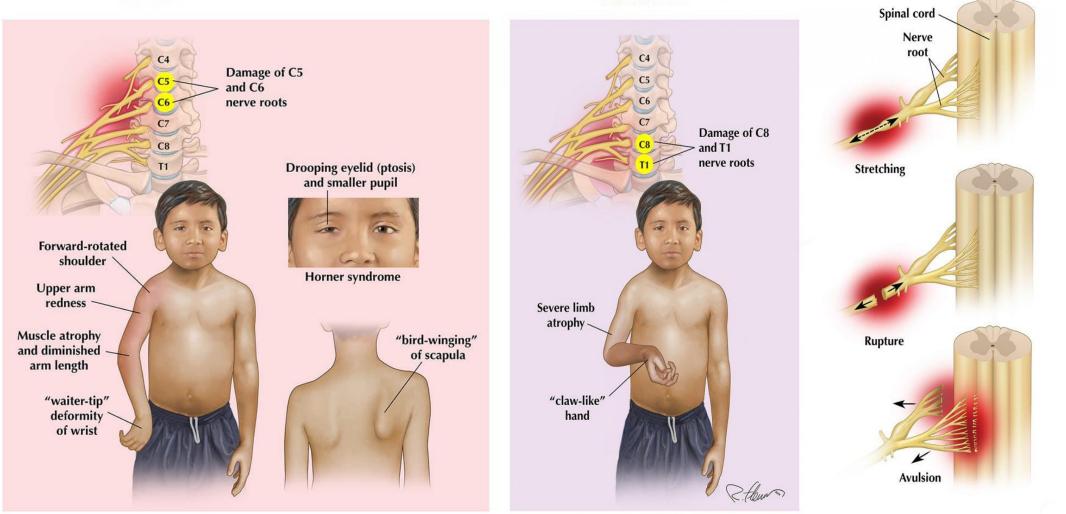
مهم

لجراحة **ف**ل الطن

Obstetric brachial plexus injuries

Caused by excessive traction on the brachial plexus (C5+C6+C7+C8+T1) during childbirth

Clinical features:


- \circ Difficult delivery
- Flail arm

*****Further examination reveals one of the following:

Erb's palsy C5 and C6
Klumpke's palsy C8 and T1

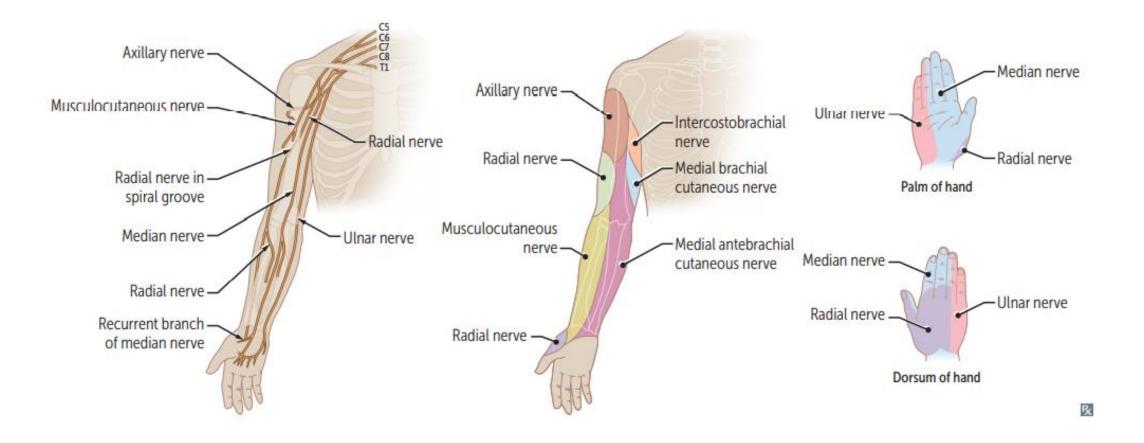
Obstetric brachial plexus injuries

Erb's palsy

Klumpke's palsy

Upper extremity nerves

NERVE	CAUSES OF INJURY	PRESENTATION	
Axillary (C5-C6)	Fractured surgical neck of humerus Anterior dislocation of humerus	Flattened deltoid Loss of arm abduction at shoulder (> 15°) Loss of sensation over deltoid and lateral arm	
Musculocutaneous (C5-C7)	Upper trunk compression	↓ biceps (C5-6) reflex Loss of forearm flexion and supination Loss of sensation over radial and dorsal forearm	
Radial (C5-T1)	Compression of axilla, eg, due to crutches or sleeping with arm over chair ("Saturday night palsy") Midshaft fracture of humerus Repetitive pronation/supination of forearm, eg, due to screwdriver use ("finger drop")	 Injuries above the elbow cause loss of sensation over posterior arm/forearm and dorsal hand, wrist drop (loss of elbow, wrist, and finger extension) with ↓ grip strength (wrist extension necessary for maximal action of flexors) Injuries below the elbow cause distal paresthesias without wrist drop Tricep function and posterior arm sensation spared in midshaft fracture 	


Humerus fractures, proximally to distally, follow the **ARM** (Axillary \rightarrow **R**adial \rightarrow **M**edian) nerves

Upper extremity nerves

NERVE	CAUSES OF INJURY	PRESENTATION
Median (C5-T1)	Supracondylar fracture of humerus → proximal lesion of the nerve Carpal tunnel syndrome and wrist laceration → distal lesion of the nerve	"Ape hand" and "Hand of benediction" Loss of wrist flexion and function of the lateral two Lumbricals, Opponens pollicis, Abductor pollicis brevis, Flexor pollicis brevis (LOAF) Loss of sensation over thenar eminence and dorsal and palmar aspects of lateral 3 1/2 fingers with proximal lesion
Ulnar (C8-T1)	 Fracture of medial epicondyle of humerus (proximal lesion) Fractured hook of hamate (distal lesion) from fall on outstretched hand Compression of nerve against hamate as the wrist rests on handlebar during cycling 	 "Ulnar claw" on digit extension Radial deviation of wrist upon flexion (proximal lesion) I flexion of ulnar fingers, abduction and adduction of fingers (interossei), thumb adduction, actions of ulnar 2 lumbrical muscles Loss of sensation over ulnar 1 1/2 fingers including hypothenar eminence
Recurrent branch of median nerve (C5-T1)	Superficial laceration of palm	"Ape hand" Loss of thenar muscle group: opposition, abduction, and flexion of thumb No loss of sensation

Upper extremity nerves

الخيارات من عندى

Musculocutaneous (C5-C7) nerve

Which of the following is true about musculocutaneous nerve injury ?

- a. Loss of sensation on lateral arm
- b. Loss of sensation on lateral forearm
- c. Loss the ability to extend the elbow
- d. Loss the ability to extend the wrist
- e. Flattened deltoid

Radial (C5-T1) nerve

Site of lesion	Sensory symptoms	Motor symptoms
Axilla	• All below	 All below Paralysis of the <u>triceps</u> muscle may occur if the <u>radial nerve</u> is injured in the <u>axilla</u>.
Mid-arm	 All below Numbness, <u>paresthesia</u>, <u>pain</u> along <u>lateral posterior</u> arm (does not occur in midshaft <u>humerus fracture</u>) 	 All below Wrist drop Paralysis or weakness of the hand and finger extensors, which results in decreased grip strength (wrist extension ensures the optimal action of finger flexors) The patient cannot extend their hand at the <u>wrist joint</u>.
Elbow (radial tunnel)	 <u>Pain</u> and tenderness following extension or repetitive pronation/supination^[1] 	 Sometimes weakness of extension and <u>supination</u>, secondary to <u>pain</u> (not to missing innervation!)
Deep forearm (<u>proximal</u> posterior interosseous nerve)	• None ^[2]	 Paralysis of the finger extensors (no true wrist drop)
Superficial forearm and wrist (superficial radial nerve)	 Deficits on the radial side of the dorsum of the hand (thumb, index finger, and the radial half of the middle finger) (=) ^[3] 	• None

Radial (C5-T1) nerve

What is the injured nerve ?

- a. Axillary nerve
- b. Musculocutaneous nerve
- c. Radial nerve
- d. Median nerve
- e. Ulnar nerve


 \circ Radial nerve injury → Wrist drop + Fingers drop \circ Anterior interosseous nerve injury → Fingers drop

Radial (C5-T1) nerve

This area is supplied by which nerve ?

- a. Median nerve
- b. Lateral cutaneous nerve of the hand
- c. Superficial radial nerve
- d. Ulnar nerve
- e. Musculocutaneous nerve

سنوات (1) الخيارات من عندي

Radial (C5-T1) nerve

What is the injured nerve ?

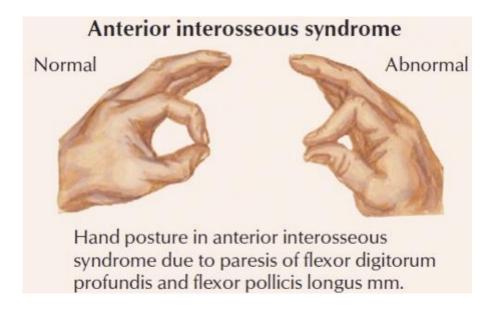
- a. Anterior interosseus nerve
- b. Posterior interosseus nerve
- c. Lateral cutaneous nerve of the hand
- d. Superficial radial nerve
- e. Musculocutaneous nerve

A 58-year-old man with absence of independent extension of right index finger and thumb prior to surgical decompression of the posterior interosseous nerve from lipoma

Location of lesion	Motor deficit	Sensory deficit
Proximal (above anterior interosseous nerve origin)	 Hand of benediction: when asked to make a fist, the patient can only flex the ring finger and the little finger due to Loss of thumb opposition and abduction Loss of index and middle finger flexion Impaired wrist pronation and flexion Thenar muscle atrophy (chronic injury) 	
Distal (affecting anterior interosseous nerve)	• Anterior interosseous nerve syndrome: loss of <u>flexion</u> in <u>distal joints</u> of the thumb and index finger, leading to an inability to pinch small objects (pinch sign) or form the "OK sign" 🐼	• None
Distal (below <u>anterior</u> interosseous nerve origin)	 Recurrent branch of median nerve Innervates muscles of the thenar eminence Damaged with lacerations of the radial-sided wrist and proximal palm Results in loss of thumb flexion, opposition, and abduction without sensory or other motor deficits Median claw: Distal median nerve injury causes palsy of the lumbricals I and II with preserved function of extrinsic flexors. This imbalance leads to permanent flexion of the index finger and the middle finger (aggravated when trying to extend the fingers). Ape hand: inability to oppose and abduct the thumb due to injury of the proximal or distal median nerves impairing the thenar muscles' functions Palmar cutaneous nerve Purely sensory nerve arising from median nerve proximal to the carpal tunnel Provides sensation to the palm 	
Distal (within wrist)	 <u>Carpal tunnel syndrome</u> Mild impairment of <u>flexion</u> of index finger, long finger, and thumb (less severe than in other <u>median</u> <u>nerve</u> lesions) Thenar muscle <u>atrophy</u> (in chronic injury) 	

الطَّبُّالجُراحَةُ جنعه

÷


Median (C5-T1) nerve

*****To examine what nerve ?

 \odot Anterior interosseous nerve

In which fracture it could be injured ?

 \circ Medial supracondylar

لوات (1)

Median (C5-T1) nerve

Describe what you see

 $\odot\,\text{Ape}$ hand

What is the affected nerve ?

 \circ Distal median nerve injury

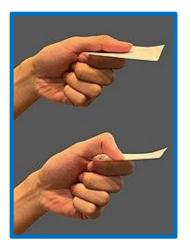
Ape hand: inability to oppose and abduct the thumb due to injury of the proximal or distal median nerves impairing the thenar muscles' functions


سنوات (2) الخيارات من عندي

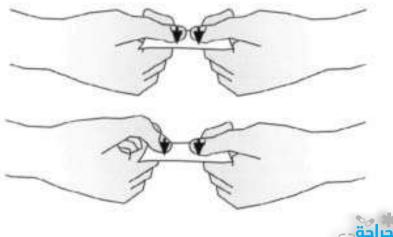
Ulnar (C8-T1) nerve

This area is supplied by which nerve ?

- a. Median nerve
- b. Lateral cutaneous nerve of the hand
- c. Superficial radial nerve
- d. Ulnar nerve
- e. Musculocutaneous nerve


سنوات (2) اخر خيارين من عندي

Ulnar (C8-T1) nerve


This test used to test what muscle ?

- a. Median nerve
- b. Ulnar nerve
- c. Radial nerve
- d. Lateral cutaneous nerve of the hand
- e. Superficial radial nerve

 Positive Froment's sign (a special test of the wrist for palsy of the ulnar nerve, specifically, the action of adductor pollicis)

Claw hand

What is the name of this deformity ?

 $\odot \text{Ulnar}$ claw hand

What is the nerve affected ?

 \circ Ulnar nerve

Clavicle & Scapula

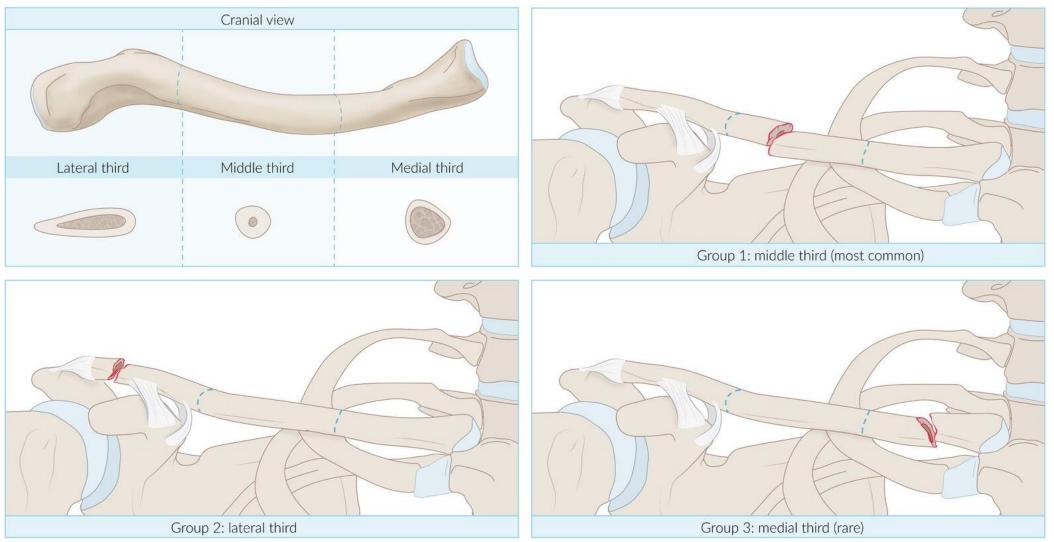
Clavicle fracture

Epidemiology: Most commonly occurs in children and adolescents

Mechanism of injury:

- O Direct trauma (95%)
 - Fall onto the shoulder, lateral compression; most common cause
 - Direct blow to the clavicle; comminuted fracture
- o Indirect trauma (5%): mainly falls onto an outstretched hand

Classification: Allman classification system


- Group I: Midshaft fracture/middle third (Most common site of fracture)
 - because it's the weakest point; not protected by muscles and thin bone cortex

○ Group II: Lateral/distal third

- o Group III: Medial/proximal third (Rare)
 - Fractures in this area occur infrequently because of surrounding muscles and ligaments that protect the clavicle. Thus, this fracture raise suspicion of accompanying injuries

Allman classification system

Diagnostics

Physical examination

 \odot Assess for neurovascular compromise and compartment syndrome

- Weak pulses: possible injury of the subclavian artery
- Dysfunction of a distal nerve: possible injury of the brachial plexus
- Massive swelling and discoloration: possible injury of the subclavian vein

✤Imaging

- Best initial test: x-ray in 2 views (Upright anteroposterior view, 45° cephalic tilt view)
 - Why upright AP ? Gravity effect will lead to better view of deformity
- CT/MRI when associated injuries are suspected or x-ray findings are inconclusive

Physical examination

Management

Midshaft (group I) fractures

- Mostly conservative treatment (e.g., simple shoulder sling) for 4–6 weeks
- Exception: excessively shortened or displaced fractures (require surgery)

Lateral (group II) fractures

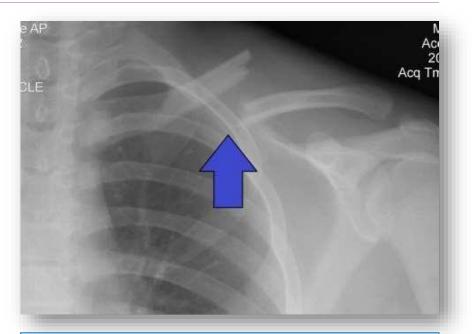
- Stable fractures: conservative treatment (e.g., simple shoulder sling)
- \circ Unstable fractures
 - Surgical fixation (e.g., tension banding, clavicular plate) is typically indicated
 - If needed, ligament repair

Medial (group III) fractures

- Conservative treatment (similar to group I fractures)
- Displacement is uncommon due to strong ligamentous attachments.

Why do we use shoulder sling in clavicle fractures ?

 To override the upper limb weight from the clavicle to the cervical spine


Hx: Falling on outstretched hand (FOOSH)

Diagnosis المنوات (1) منوات (1)

 \odot Clavicle fracture

- (۱) سنوات (۱) What is the muscle that exerts action on the medial side of the fractured bone?
 - a. Sternocleidomastoid
 - b. Trapezius
 - c. Deltoid muscles

السؤال كان بدون خيارات فقط الجواب الخيارات الثانية إضافة من عندي

Muscle attachments Lateral one-third: trapezius and deltoid muscles Medial two-thirds: sternocleidomastoid, pectoralis major, and subclavius muscles

سعه سنه ات

سنوات (1) الخيارات من عندي

What is your diagnosis ?

- a. Sternoclavicular joint dislocation
- b. Medial fracture
- c. Midshaft fracture
- d. Lateral fracture
- e. Acromioclavicular joint dislocation

Scapula pathologies

1. Winged scapula

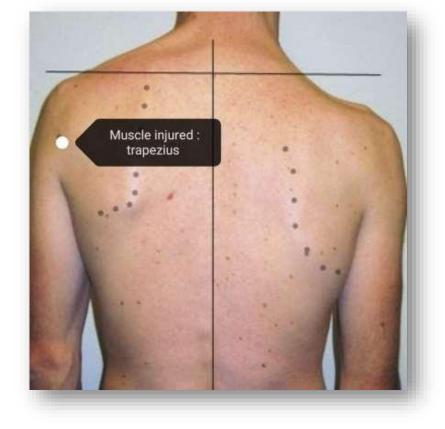
 \odot Medial winging from disruption to Long thoracic nerve \rightarrow Serratus anterior \odot Lateral winging from disruption to

- Spinal accessory \rightarrow Trapezius
- Dorsal scapular \rightarrow Rhomboids

2. Scapula fractures

O Uncommon; the scapula is protected by muscles and thoracic cage
 O Scapular fracture indicates major trauma (multi-traumatic patients)

Winged Scapula


What is this deformity ?

 \odot Lateral winging of scapula

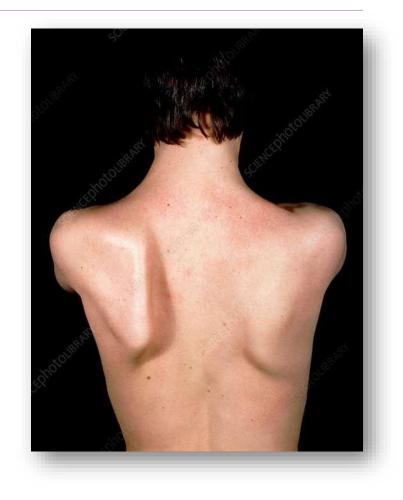
What is the name of the affected muscle ?

 \circ Trapezius muscle

What is the name of the affected nerve ? • Spinal accessory

Winged Scapula

*****What is this deformity ?


 \odot Medial winging of scapula

What is the name of the affected muscle ?

 \odot Serratus anterior

What is the name of the affected nerve ?

 \odot Long thoracic nerve

Shoulder

Shoulder motion

The shoulder consist of 4 joints

- $\circ \, \text{Scapulothoracic}$
- $\circ \text{ Acromioclavicular}$
- \circ Sternoclavicular
- \circ Glenohumeral

Normal shoulder motion

- $\,\circ\,$ 2/3 of normal shoulder abduction comes from the glenohumeral joint
- \odot 1/3 of shoulder abduction comes from scapulothoracic joint

Problems of motion: Active Vs Passive

- \circ If passive = active
 - The problem is usually of the static components if the joint
 - E.g., Arthritis, Adhesive capsulitis, Locked joint
- \odot If passive > active
 - The problem is dynamic or patient is in pain

Shoulder's x-ray of a rheumatoid arthritis patient

- a. Passive motion is greater than active
- b. Passive motion is equal to active
- c. Active motion is greater than passive

نوات (1)

Shoulder stability

Static Stabilizers (Non-Contractile)

 \circ Bone

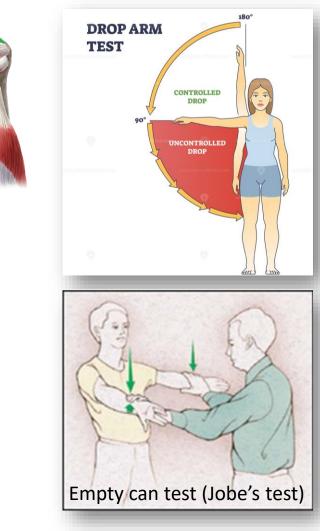
Labrum (Deepen the joint, Muslces and ligaments attachment)

o Capsule (Negative pressure)

 $\circ \text{Ligaments}$

Dynamic Stabilizers (Contractile)

 Rotator cuffs (Supraspinatus, Infraspinatus, Subscapularis, Teres minor)
 Superficial muscles (Deltoid, Pectoralis Major, Latissmus dorsi, Biceps, Serratous anterior, Trapezius)


Supraspinatus

Anatomy

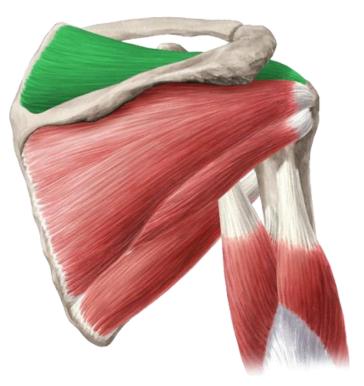
- \odot Origin: Supraspinous fossa of scapula
- Insertion: Greater tuberosity of humerus; capsule of shoulder joint
- \circ Nerve Supply: Suprascapular nerve
- \odot Action: Abducts arm and stabilizes shoulder joint

Examination

- \odot Subacromial space tenderness
- Drop arm test; indicates complete tear
- Empty can test (Jobe's test); positive if there was shoulder pain or muscle weakness

Supraspinatus

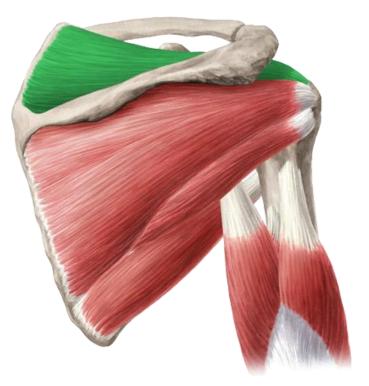
Name of the muscle:


○Supraspinatus muscle

***Insertion**:

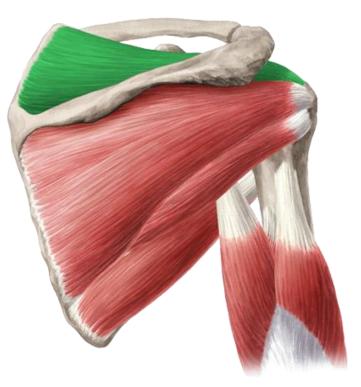
 \circ Greater tubercle

*****Action:


 \circ Abduction 0-30

Special Test used for this muscle

- a. Empty bear can test , Drop arm test
- b. Lift-off Test , Drop arm test
- c. Yergason's Test , Speed's Test

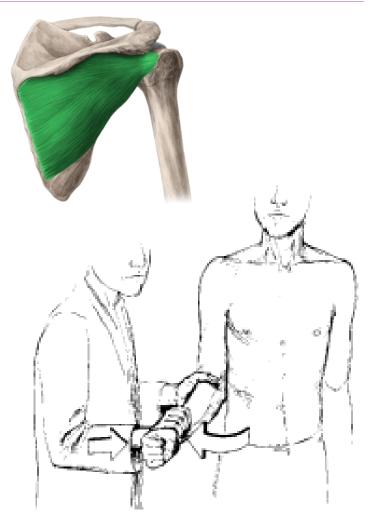


لوات (1)

سنوات (2)

The main function of this muscle

- a. Flexion
- b. Extension
- c. Initiate Adduction
- d. Initiate Abduction
- e. Initiate Rotation

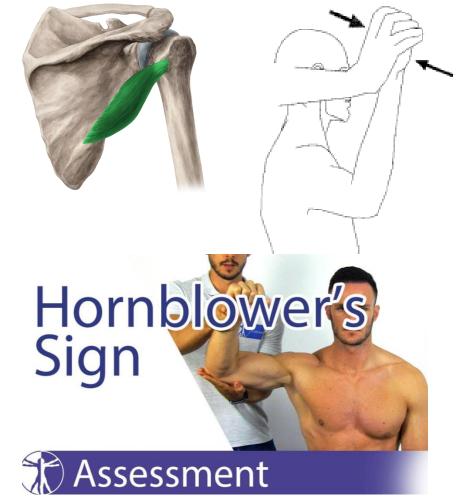

Infraspinatus

*Anatomy

- \odot Origin: Infraspinous fossa of scapula
- Insertion: Greater tuberosity of humerus; capsule of shoulder joint
- Nerve Supply: Suprascapular nerve
- \odot Action: Laterally rotates arm during arm adduction

Examination

- \circ Infraspinatus test
 - Decreased in angle between the arm and the abdomen indicates complete tear
 - Pain on resistance indicates incomplete tear or tendinitis

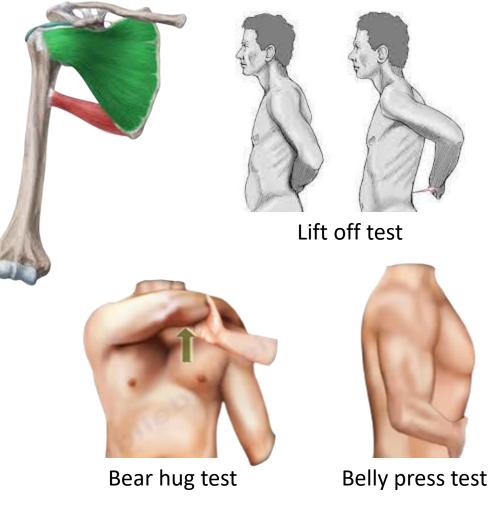

Teres Minor

Anatomy

- Origin: Upper two thirds of lateral border of scapula
- Insertion: Greater tuberosity of humerus; capsule of shoulder joint
- \odot Nerve Supply: Axillary nerve
- Action: Laterally rotates arm during abduction and stabilizes shoulder joint

Examination

 Hornblower sign; positive if pain or weakness


Subscapularis

Anatomy

- Origin: Subscapular fossa
- \odot Insertion: Lesser tuberosity of humerus
- Nerve Supply: Upper and lower subscapular nerves
- Action: Medially rotates arm and stabilizes shoulder joint

Examination

- Lift off testBear hug test
- \odot Belly press test

Subscapularis

What is the name of this test ?

 \odot Lift off test used for subscapularis muscle

Where is the insertion of the muscle doing this movement ?

 \circ lesser tubercle

What is the action of this muscle ?

 $\ensuremath{\circ}$ internal rotation with adduction

The examined muscle

- a. Supraspinatus
- b. Infraspinatus
- c. Subscapularis
- d. Teres minor
- e. Teres major

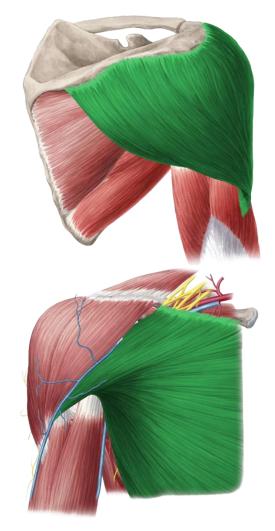
Function of the muscle which is examined by this test

- a. Internal rotation of the shoulder
- b. External rotation of the shoulder
- c. Abduction of the shoulder
- d. Adduction of the shoulder
- e. Flexion of the shoulder

Superficial Muscles

1. Deltoid

 \odot Origin: Lateral third of clavicle, acromion, spine of scapula \odot Insertion: Middle of lateral surface of shaft of humerus


\odot Nerve Supply: Axillary nerve

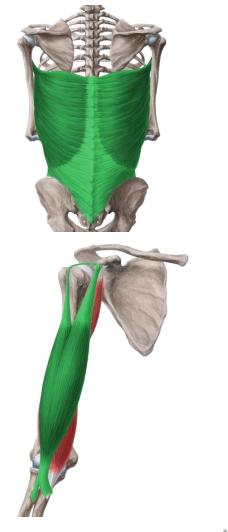
 \odot Action: Abducts arm; anterior fibers flex and medially rotate \odot arm; posterior fibers extend and laterally rotate arm

2. Pectoralis major

Origin: Clavicle, sternum, and upper six costal cartilages
 Insertion: Lateral lip of bicipital groove of humerus
 N. Supply: Medial and lateral pectoral nerves from brachial plexus

 \odot Action: Adducts arm and rotates it medially; clavicular fibers also flex arm

Superficial Muscles


3. Latissimus dorsi

Origin: Iliac crest, lumbar fascia, spines of lower six thoracic vertebrae, lower three or four ribs, and inferior angle of scapula
 Insertion: Floor of bicipital groove of humerus
 N Supply: Thoracodorsal nerve

 \odot Action: Extends, adducts, and medially rotates the arm

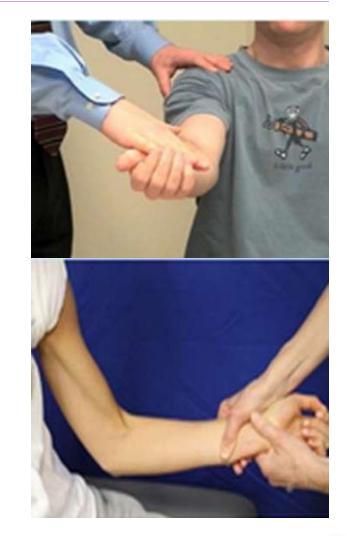
4. Biceps brachii

- \odot Long head: Origin: Supraglenoid tubercle of scapula
- \odot Short head: Origin: Coracoid process of scapula
- \odot Insertion: Tuberosity of radius and bicipital aponeurosis into deep fascia of forearm
- Nerve Supply: Musculocutaneous nerve
- \odot Action: Supinator of forearm and flexor of elbow joint; weak flexor of shoulder joint

Biceps brachii

Examination

 \odot Yergason's test: Positive if pain in the bicipital groove


 Speed's test: Positive if pain in the bicipital groove; indicates long head tendinitis

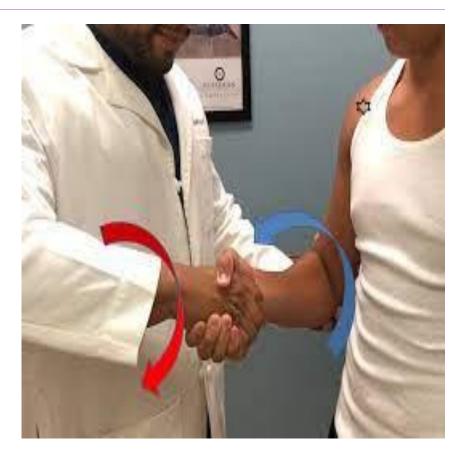
These 2 tests are used to examine

- a. Subscapularis
- b. Supraspinatus
- c. Deltoid
- d. Brachialis
- e. Biceps muscle

ىنوات (1)

Nerve supply to the muscle which examined by these test

- a. Axillary nerve
- b. Musculocutaneous nerve
- c. Median nerve
- d. Radial nerve
- e. Ulnar nerve



نوات (2)

سنوات (1)

This test is done for

- a. Biceps tendonitis
- b. Tennis elbow
- c. Golfers elbow

Biceps brachii examination

What are these tests used for ?

 \odot Used for examination of biceps muscle

What is true about the muscle tested by this tests ?

- a. It has the same nerve supply of brachialis
- b.
- с.
- d.
- e.

Biceps tendon Rupture

Proximal biceps rupture

 \circ Popeye sign

 \odot Treatment: conservative

 \odot Consider surgery in young people and for cosmetic reasons

Distal biceps rupture

 \odot Treatment: Tendon repair

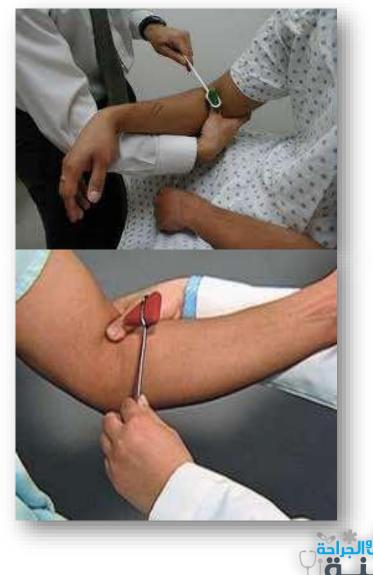
Why the proximal rupture can be managed conservatively while the distal rupture always require surgery ?

 Proximally the biceps has 2 heads thus the rupture of 1 tendon is compensated by the other

Distal biceps rupture

Proximal biceps rupture

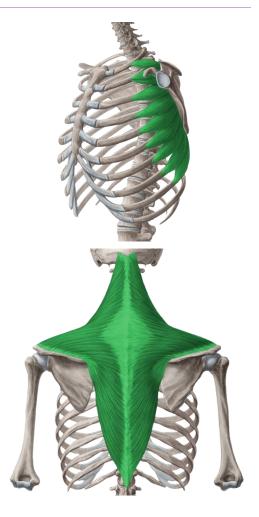
Function and nerve supply of this injured muscle


- a. Extension of elbow, Axillary nerve
- b. Extension of elbow, Musculocutaneous nerve
- c. Flexion and supination of elbow, Musculocutaneous nerve
- d. Flexion and supination of elbow, Axillary nerve
- e. Extension of the wrist, Radial nerve

الخيارات من عندى

Biceps reflex

Note: biceps reflex is controlled by C5 herniation of C5-C6 intervertebral disc would affect C5 (Any disc herniation affects the upper segment except for far lateral lumbar disc herniation affects the lower segment

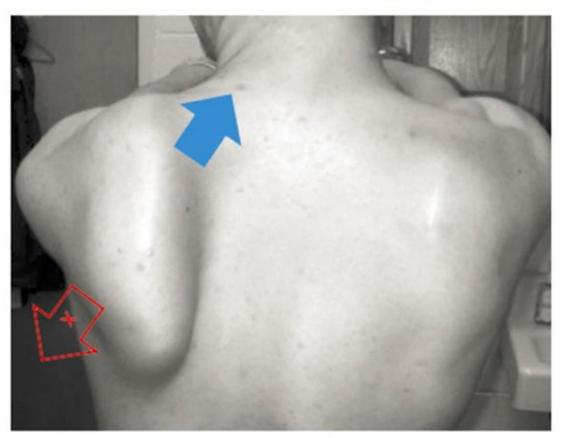

Superficial Muscles

Serratus anterior

- \odot Origin: Upper eight ribs
- \odot Insertion: Medial border and inferior angle of scapula
- \odot N Supply: Long thoracic nerve
- Action: Draws the forward anterior around the thoracic wall; rotates scapula

Trapezius

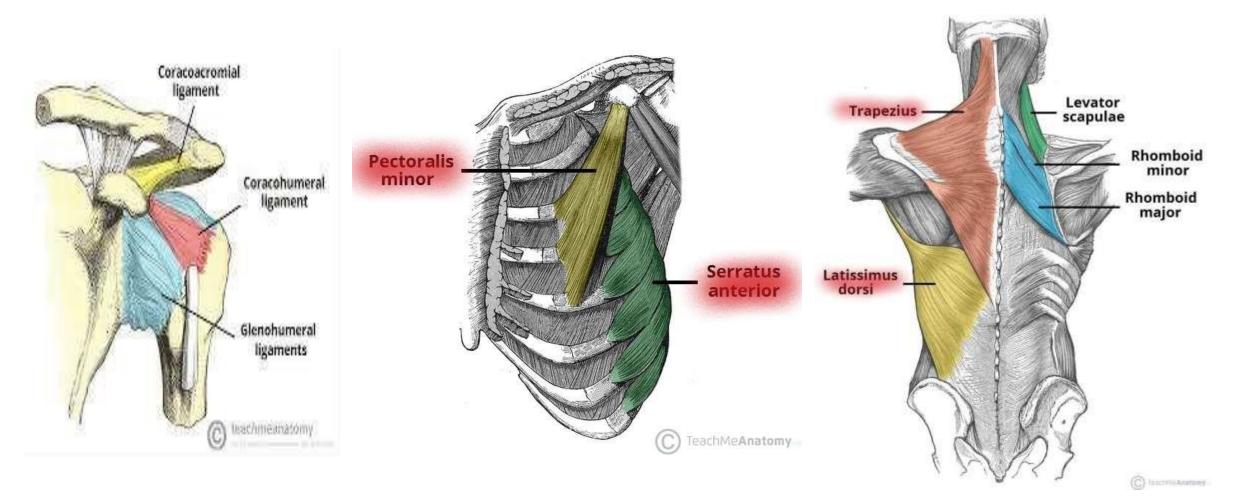
- Origin: Occipital bone, ligamentum nuchae, spine of 7th cervical vertebra, spines of all thoracic vertebrae
- Insertion: Upper fibers into lateral third of clavicle; middle and lower fibers into acromion and spine of scapula
- N Supply: Spinal part of accessory nerve (motor) and C3 and 4 (sensory)
- Action: Upper fibers elevate the scapula; middle fibers pull scapula medially; lower fibers pull medial border of scapula downward



Scapula winging

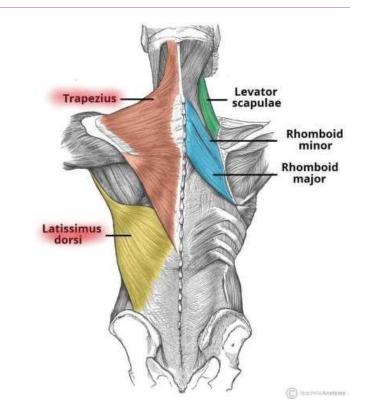
Lateral Scapular Winging

Medial Scapular Winging


Absent pull of trapezius due to Spinal Assessory Nerve palsy

Absent pull of serratus anterior due to Long Thoracic Nerve palsy

Identify the marked muscles



سنوات (2)

Which nerve supplies the blue muscle ?

- a. Axillary nerve
- b. Dorsal scapular nerve
- c. Long thoracic nerve
- d. Spinal accessory nerve
- e. Suprascapular nerve

Calcific tendinitis

Pathophysiology

 Deposition of calcium hydroxyapatite crystals within the rotator cuff tendons esp. supraspinatus

Clinical features

Disabling painDecrease in ROM

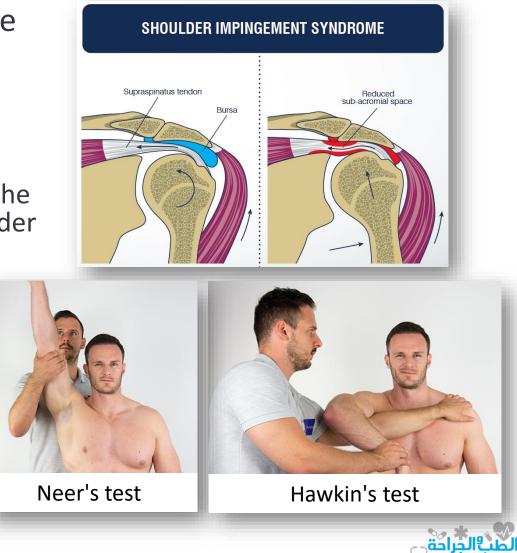
Management

- \circ Activity modification
- \circ NSAID
- \circ ECSW
- \odot Steroid Injection
- \circ Surgery

Rotator Cuff Impingement

Pathophysiology: structural narrowing in the subacromial space

Clinical features


 Patients often report painful elevation and depression of the arm between 70° and 120° (painful arch), pain on forced movement above the head, and pain when lying on the affected shoulder

Examination

- \circ Neer's test
- \circ Hawkin's test

Management

 Rest and activity modification, NSAID, Physiotherapy, Injections, Surgery (Rare)

Rotator cuff tendinitis

◆Pathophysiology: Tendinitis → Edema → Thickened tendon → Impingement → Tear → Edema → Impingement

Clinical features

 Pain over the anterolateral part of the shoulder that is exacerbated by overhead activities.

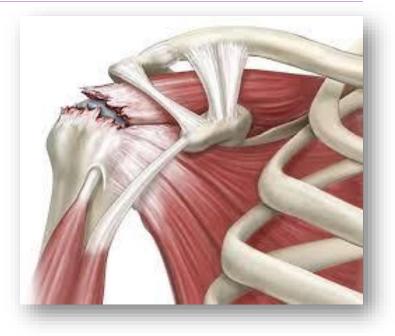
 Night pain is a frequent symptom, especially when the patient lies on the affected shoulder

 \odot Weakness and loss of shoulder motion

Management

 Stop the activity, Ice, Anti-inflammatory drugs, Light exercise and physiotherapy, Injections, Surgery

Rotator cuff tear


Etiology

 Chronic degenerative tear is seen in individuals aged > 50 years.

 Acute injury is seen mostly in athletes (e.g., infraspinatus tear in baseball pitchers).

Clinical features

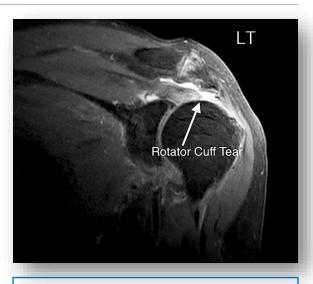
- \odot Most commonly affects the supraspinatus tendon
- Acute rupture: acute severe pain and loss of strength
- Degenerative rupture: chronic pain; loss of strength is less pronounced
- \odot Restricted range of motion

Rotator cuff tear

* Diagnostics

 X-ray: superior displacement of the humeral head (highriding humeral head)

 \odot MRI to determine the location and extent of the rupture


Management

\circ Traumatic rupture

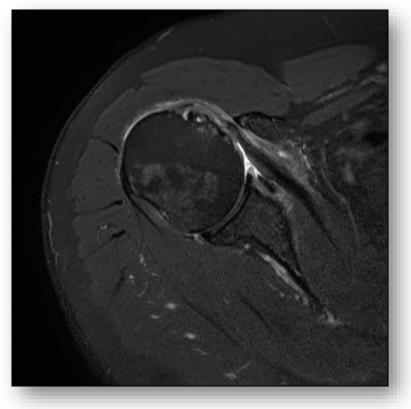
• Surgical repair; especially those who are physically active

\circ Degenerative

- Activity modification
- Pain medication
- Physiotherapy to strengthen the rotator cuff and scapular stabilizer

Complete vs Incomplete

- Complete: Tendon is shortened and doesn't reach its insertion
- Incomplete: Reach its insertion


Partial vs Full thickness

• Depends on the thickness of fluid

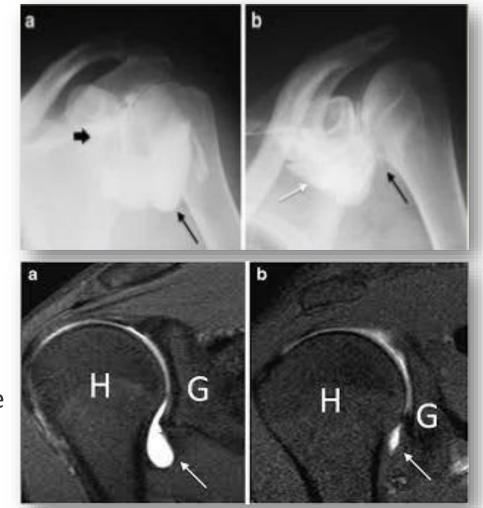
Rotator cuffs tear

- Patient with subscapularis tendon complete tear which of the following describes the physical findings ?
 - a. Passive flexion of the left arm is more than right arm
 - b. Passive extension of the left arm is more than right arm
 - c. Passive external rotation of the left arm is more than right arm
 - d. Active extension of the left arm is more than right arm
 - e. Passive extension of the right arm is more than left arm

Frozen shoulder

Epidemiology: F>M

*Etiology


- Idiopathic, usually associated with diabetes and Parkinson's
- \odot Secondary, most of the time due to prolonged immobilization

Clinical feature:

 Usually involves pain and stiffness that develops gradually, gets worse and then finally goes away

* Diagnostics

- Arthrography (an X-ray with contrast dye injected into the shoulder joint to demonstrate the "shrunken shoulder capsule")
- \odot The tissues of the shoulder can also be evaluated with an MRI scan.

Frozen shoulder – Course

The normal course of a frozen shoulder has been described as having three stages:

- 1. The "freezing" or painful stage, (0 weeks to 6 months) As the pain worsens, the shoulder loses motion.
- 2. The "frozen" or adhesive stage (6-12months) Slow improvement in pain but the stiffness remains.
- 3. The "thawing" or recovery (12-18 months) when shoulder motion slowly returns toward normal.

Frozen shoulder – Management

- Medical Treatment (aggressive combination of antiinflammatory medications, cortisone injection)
- Physical therapy (electric stimulation, range-of-motion exercise maneuvers, ice packs, and eventually strengthening exercises).
- Other treatments such as release of the scar tissue by arthroscopic surgery or manipulation of the scarred shoulder under anesthesia may be considered for patients with resistant frozen shoulders

Shoulder dislocation

Epidemiology

◦ Most common joint dislocation, Sex: ♂ > ♀, Peak incidence: 20–29 years

*Etiology

• Trauma (e.g., falling on an outstretched arm)

 \odot Predisposing factors for recurrent shoulder dislocation

 Rotator cuff tear, Damage to the glenohumeral ligament, Bankart lesion and Hill-Sachs lesion, Loose joint capsule

For posterior dislocation: uncoordinated muscle contraction (e.g., seizure, electrical shock)

Classification

- o > 95 % anterior (subcoracoid) and/or anterior-inferior (subglenoid); fall on externally rotated, abducted and extended arm
- $\circ \sim 4\%$ posterior
- $\circ \sim$ 1% inferior

Clinical features

General symptoms

 \odot Severe shoulder pain

 $\ensuremath{\circ}$ Inability to move the shoulder

 \circ Empty glenoid fossa: A palpable dent may be present at the point where the head of the humerus is supposed to lie.

*****Anterior or anterior-inferior dislocation

- \odot The humeral head can usually be palpated below the coracoid process.
- \odot The arm is typically held in external rotation and slight abduction.

Posterior dislocation

- \odot Prominence of the posterior shoulder with anterior flattening
- \odot Prominent coracoid process
- \circ The arm is held in adduction and internal rotation, with the patient unable to actively rotate it in the outward direction.

Inferior dislocation

 \circ The arm is held above the head, with the patient unable to actively adduct the arm.

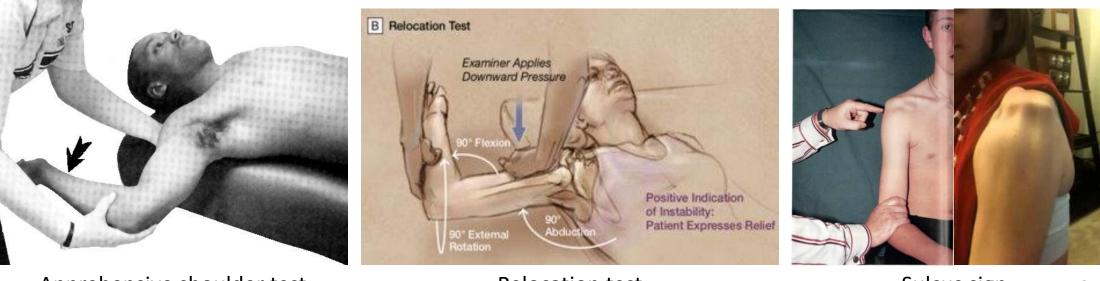
• Neurologic dysfunction, especially with involvement of the axillary nerve, is common.

Clinical features

Multidirectional Instability (MDI)

- Can be from overuse (microtrauma)
- \odot Associated with connective-tissue disorders
 - Marfan's, Ehler-Danlos
- \odot Will possess patulous inferior capsule and deficient rotator interval
- Primary treatment is always non-operative
 - Dynamic strengthening
- Surgical treatment reserved for patients who failed prolonged conservative management
 - Focus on the capsule

Physical exam


Check for neurovascular deficits pre and post reduction

Special tests:

 \odot Apprehensive shoulder test

 \circ Relocation test

 \circ Sulcus sign

Apprehensive shoulder test

Relocation test

Sulcus sign

Imaging

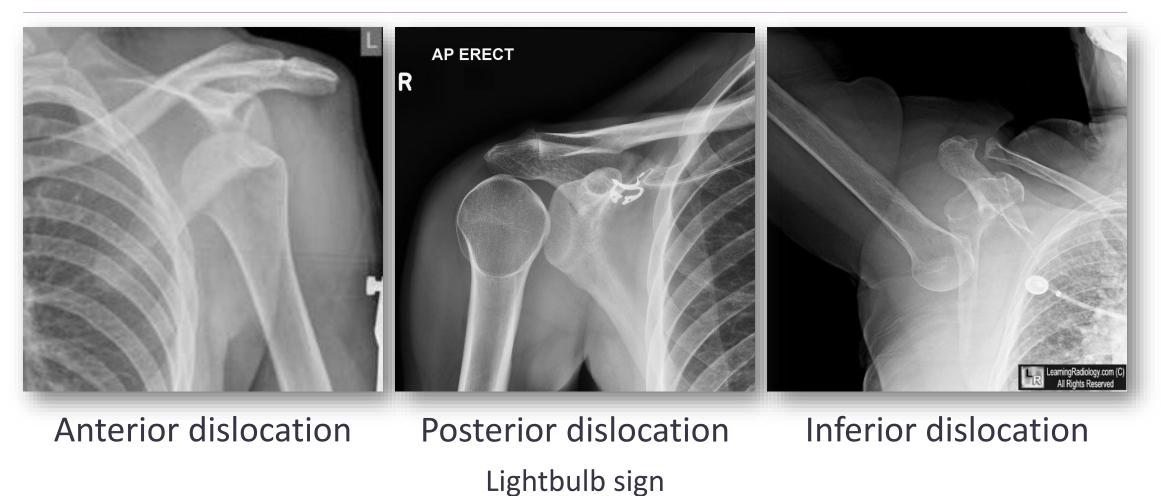
Shoulder X-ray

 AP view and lateral view (Y view, an x-ray in which the body of the scapula forms the letter "Y" with the coracoid process and the acromion) to confirm dislocation and exclude fracture

- For posterior shoulder dislocation: axillary and/or scapular lateral views (Y view)
- The lightbulb sign is diagnostic of posterior shoulder dislocation.

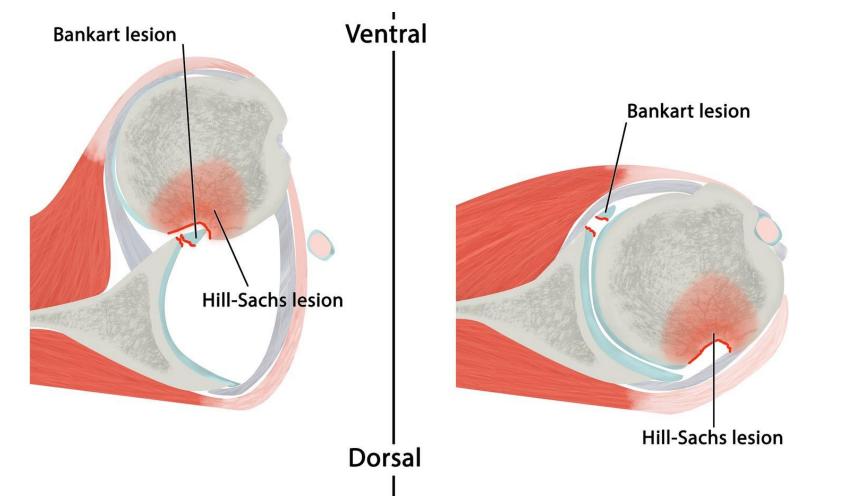
\odot Hill-Sachs lesion

- Seen in 35–40 % of patients with an anterior dislocation
- An indentation on the posterolateral surface of the humeral head caused by the glenoid rim


*MRI

 \odot Indicated to assess soft tissue damage or if a Hill-Sachs lesion is present

• **Bankart lesion**: injury of the anterior inferior lip of the glenoid labrum due to traumatic anterior shoulder dislocation


Shoulder X-ray

Hill-Sachs and Bankart lesion

In an anterior shoulder dislocation, the glenoid rim may indent on the dorsolateral surface of the humeral head, which is called a Hill-Sachs lesion. In Bankart lesions, the anterior inferior lip of the glenoid labrum is also damaged.

Management

Emergent management

 \odot Immobilization of the joint with a splint/sling, Analgesia

Conservative management

 \odot Closed reduction

 $\ensuremath{\circ}$ Indications:

- Inferior dislocation and most anterior dislocations (except subclavicular or intrathoracic displacements)
- Uncomplicated posterior dislocations presenting early (< 6 weeks)
- Cases with no evidence of major arterial injury, associated injuries (Bankart lesion, Hill-Sachs lesion, disruption of the labrum), or associated fractures

Surgical management

○ Indications:

- Unsuccessful closed reduction
- Concomitant dislocated fracture of humerus, clavicle, or scapula
- Displaced Bankart lesion
- Recurrent shoulder dislocations
- Young and active individuals may require early surgery to prevent recurrent dislocations in the future.

Complications

High rate of recurrence (dislocation with 1 year)

- Most patients younger than 30 experience at least one recurrence after the first dislocation.
- \odot Incidence decrease with change

Damage to the axillary nerve

- Numbness or sensory loss over the lateral surface of the shoulder
 Malfunction of the deltoid muscle, resulting in an inability to abduct the arm
- Injury to the brachial plexus, axillary artery, and/or axillary vein
- Avulsion fracture of the major and/or minor tubercles
- Shoulder joint instability
- Rotator cuff injury
- Shoulder stiffness (More commonly seen in elderly)
- Osteoarthritis of the shoulder joint

Which of the follow is wrong about this case ?

- a. Most common type is anterior
- b. Most common subtype is sub-coracoid
- c. Common in middle age
- d. Patient presents with external rotation and abduction
- e. Radial nerve injury is the most common one

Shoulder dislocation

(3) سنوات (3) What lesion would form at the glenoid labrum ?
O Bankart lesion

(2) النوات (2) What is the best management?

 \odot Closed reduction under an esthesia

(1) منوات (1) Patient presented with shoulder dislocation 4 time what's the management ?

∘ Surgery

Shoulder dislocation

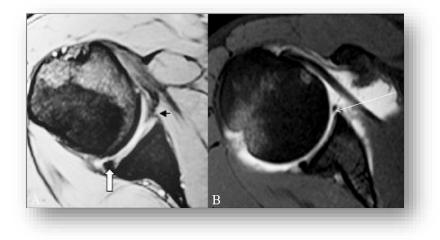
*****What is the name of this abnormality ?

 \odot Hill Sachs lesion

*****It is associated with what ?

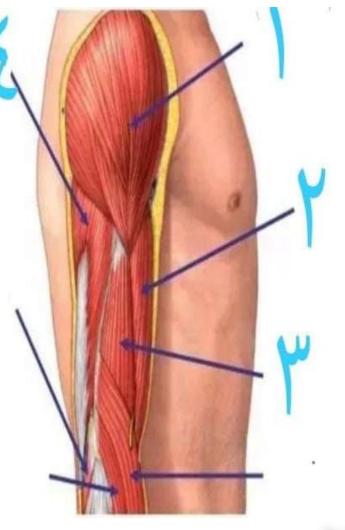
 \odot Recurrent shoulder dislocation

What expected inability may be seen in this condition ?


 \odot Loss of lateral arm sensation

What is your diagnosis ?

a. Bankart lesion: anterior inferior glenoid labrum injury



سنوات (2)

Identify these muscles :

- 1. Deltoid
- 2. Biceps
- 3. Brachialis
- 4. Triceps

Humerus fracture

Epidemiology

○ Proximal humerus fractures are the most common humerus fractures
 ○ Incidence increases with age; Osteoporosis related fracture
 ○ Sex: ♀ > ♂

Mechanism of injury

Falls with axial loading on an outstretched hand (most common cause)

- Commonly proximal humerus fracture in the elderly or distal supracondylar fracture in children.
- \odot Motor vehicle accidents
- \odot Direct blow to the back of the humerus
- Pathologic fractures (less common)

Classification

Proximal humerus fracture (common in the elderly)

- The proximal humerus has four major segments: the anatomical neck, the humeral shaft, the greater tuberosity, and the lesser tuberosity (the surgical neck is distal to the lesser and greater tuberosity)
- Neer classification: a commonly used classification that is based on whether one or more of these four segments have been displaced
 - One-part fracture: fracture lines involve 1–4 parts, but no parts are displaced
 - Two-part fracture: fracture lines involve 2–4 parts, and 1 part is displaced
 - Three-part fracture: fracture lines involve 3–4 parts, and 2 parts are displaced
 - Four-part fracture: fracture lines involve 4 parts, and 3 parts are displaced

Humeral shaft fracture

- Classification according to location: proximal third, middle third (most common location), distal third
- Classification according to comminution: type A (no comminution), type B (butterfly fragment), and type C (comminution is present)

Classification cont.

Distal humerus fracture

 \odot Classification according to an atomical site

- Lateral/medial fractures
- Supracondylar fractures: a fracture of the distal humerus, superior to the elbow joint (most common pediatric fracture)
 - Typically, a transverse fracture above the medial and lateral epicondyles
 - The most common pediatric elbow fracture

 $\odot\,\text{AO}$ classification

- Type A: extra-articular fracture
- Type **B**: partial articular
- Type C: complete articular fracture

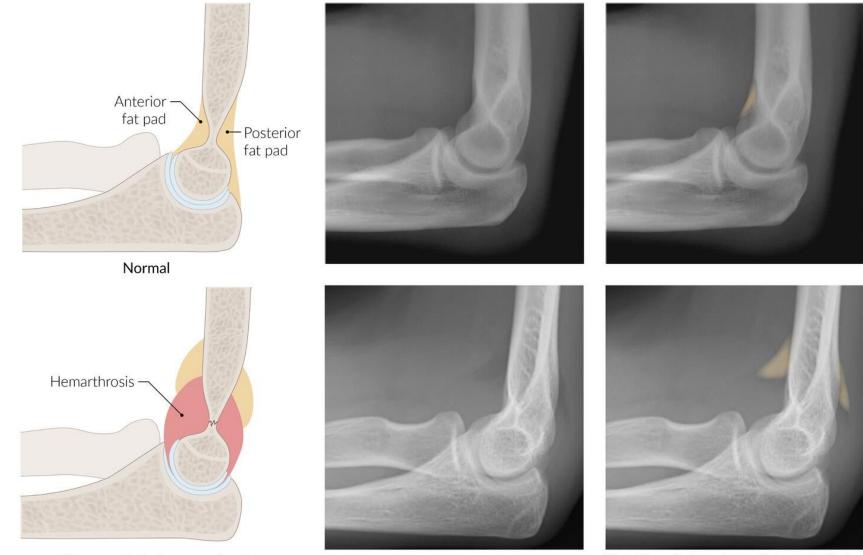
Diagnostics

X-ray (AP and lateral views of the humerus as well as transthoracic and axillary views of the shoulder)

Radiographic features of fractures

 \circ In the case of supracondylar fracture: possibly positive fat pad sign

- Represent elbow joint effusion and may indicate an occult fracture
- Can be seen on a lateral view of the elbow joint in which the joint is flexed at \sim 90°
- Posterior fat pad sign: a radiographic sign characterized by the presence of a lucent crescent in the olecranon fossa (can also be positive in radial head fractures)
- Anterior fat pad sign (sail sign): a radiographic sign characterized by the presence of a lucent crescent in the coronoid fossa


In the case of pathological fractures: signs of other entity (e.g., cysts, tumor)

CT: if x-ray is not diagnostic

MRI: if pathological fracture is suspected and/or to evaluate rotator cuff injury

Anterior and posterior fat pad signs in supracondylar humerus fracture

Supracondylar humerus fracture

Elevation of the anterior fat pad (sail sign)

Management

Conservative therapy

- \circ Indication: nondisplaced, closed fractures
- \circ Procedures
 - Hanging-arm cast or coaptation splint and sling for approx. one to two weeks with subsequent follow-up x-ray and brace
 - Early physical therapy to restore function

Surgical treatment

 Indication: open fractures, displaced fractures that cannot be reduced, associated injuries (nerves, blood vessels), floating elbow (simultaneous humerus and forearm fracture), pseudarthrosis

\circ Procedures

- Internal fixation using plates and screws, or intramedullary implants (especially supracondylar fractures)
- External fixation (e.g., open fracture, polytrauma)
- Arthroplasty of humeral head or elbow (e.g., in complex fractures), especially in elderly patients

Complications

Proximal humerus fracture

- \circ Malunion
- \odot Tuberosity malunion may cause rotator cuff dysfunction
- \circ Nonunion
- AVN (of humeral head)

Humeral shaft fracture

 \odot Radial nerve injury

Distal humerus fracture

Malunion and varus deformity of elbow
 Brachial artery injury (common)

Humerus fracture nerve palsies

Nerve	Motor function	Sensory function	Associated site of humerus fracture
Axillary	 Flat deltoid ↓ Arm <u>abduction</u> at shoulder > 15 degrees 	 ↓ Sensation over deltoid and <u>lateral</u> arm 	Proximal humerus
Radial	 Wrist drop ↓ Grip strength 	 J Sensation over <u>dorsal</u> hand and <u>posterior</u> arm 	 Humeral shaft <u>Distal humerus</u>
Ulnar	 <u>Claw hand deformity</u> <u>Froment sign</u> Radial deviation when wrist is flexed 	 J Sensation over <u>medial</u> 1 ½ fingers (5th digit and half of the 4th digit) including <u>hypothenar eminence</u> 	 Distal humerus
Median	 Anterior interosseous nerve syndrome: unable to oppose index finger and thumb of affected hand ↓ Wrist flexion ↓ Flexion of lateral fingers and ↓ thumb opposition 	 ↓ Sensation over <u>thenar eminence</u> and over <u>lateral</u> 3½ fingers (first 3½ digits, beginning with the thumb) 	• Distal humerus

Proximal humerus fractures

Osteoporosis related fracture

جدعنة من عندي

Proximal humerus fractures

This type of fracture is commonly seen in which demographic ?

 \odot Elderly due to osteoporosis

What is the most common mechanism of injury ?

 \odot Falls with axial loading on an outstretched hand

Which nerve can be injured in this type of fracture ?

○ Axillary nerve

Mention a possible complication of this fracture ? • AVN of humerus head

Proximal humerus fractures

Common Pediatric fractures

Hx: 7 years old patient

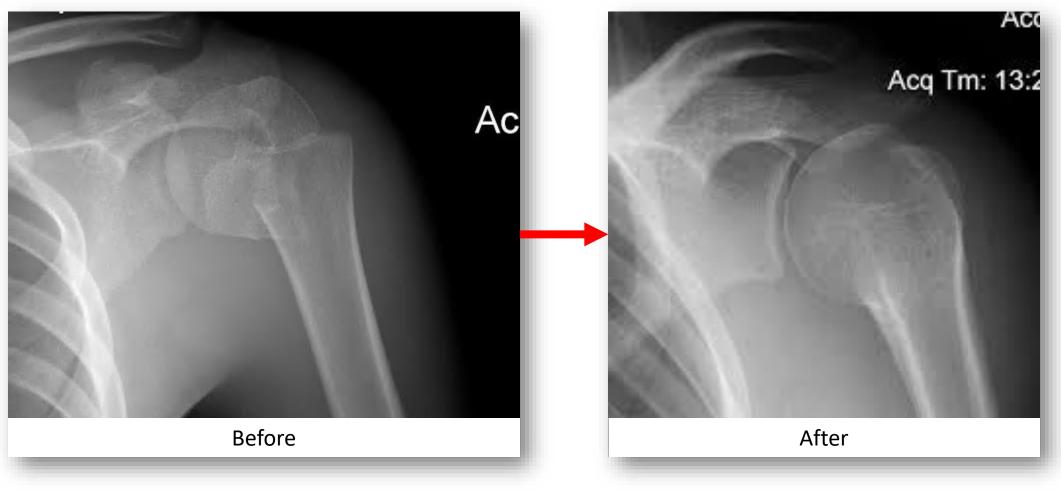
what is the management ? (1) سنوات (1)

- a. Arm splint
- b. Closed reduction
- c. Open reduction
- d. ORIF
- e. Casting

سنوات (2) What is the management ?

- a. Open reduction and internal fixation
- b. Closed reduction
- c. Arm sling
- d. Surgery
- e. Close reduction with wires

This is a proximal non-displaced humerus fracture in the pediatric group. Leaving it alone will result in spontaneous healing and remodeling. There is no need for surgical intervention, just fixation for 3 weeks.



Proximal humerus fractures

Common Pediatric fractures

Hx: 7 years old patient

This patient was treated with external fixation only (e.g., Arm splint)

Humeral midshaft fracture

(2) سنوات (2) Which nerve is most probably to be injured in this fracture ?

 \circ Radial Nerve

(6) منوات What is the function of the most probably injured nerve ?

 \odot Extension (Dorsiflexion) of wrist

(1) منوات (1) How do you test the nerve most probably injured in this fracture ?

 \odot Dorsiflexion of the wrist

Common Pediatric fractures

Supracondylar fracture

This type of fracture is commonly seen in which demographic ?

 \circ In pediatrics

What type of fracture is this ?

Supracondylar fracture, Gartland type 2
 Gartland classification next slide

What is the appropriate management ?

 \odot Closed reduction and fixation

Common Pediatric fractures

Gartland classification

Туре	Characteristic	Management
Type 1	Non-displaced	Cast immobilization x 3-4wks, with radiographs at 1 week
Type 2	Posterior cortex and posterior periosteal hinge intact	Closed reduction percutaneous pinning (CRPP)
Type 3	Displaced, in 2 or 3 planes	CRPP or open reduction if needed
Type 4	Complete periosteal disruption with instability in flexion and extension	CRPP or open reduction if needed

Common Pediatric fractures

Gartland classification

Gartland Type 1

Gartland Type 2

Gartland Type 3

Gartland Type 4

Common Pediatric fractures

Supracondylar fracture

What type of fracture is this ? • Supracondylar fracture, Gartland type 4

(3) what is the appropriate management ?

 \odot Close reduction and fixation using wires or open reduction if needed

(۱) سنوات (۲) Which nerve is most common likely to be affected in this fracture ?

 \circ Anterior interosseous nerve

(۱) سنوات (۱) Which movement is affected with this fracture ?

 \circ Flexion of fingers

Common Pediatric fractures

Supracondylar fracture

This type of fracture is commonly seen in which demographic ?

 \circ In pediatrics

What type of fracture is this ?

 \odot Supracondylar fracture, Gartland type 4

(3) 👐 What is the appropriate management ?

 Close reduction and fixation using wires or open reduction if needed

What is the name of the red line ?

 \odot Anterior humeral line

Anterior humeral line

- The anterior humeral line is key to demonstrating normal elbow alignment and should be used whenever reading a pediatric elbow radiograph to exclude a subtle supracondylar fracture.
- A line drawn down the anterior surface of the humerus should intersect the middle third of the capitellum.
- When an axial force is applied down the radius (such as after a fall onto an outstretched hand), the radial head impacts the capitellum. This results in the narrowest and weakest part of the distal humerus is placed under stress. The result is often a fracture through the supracondylar portion of the distal humerus and this usually results in posterior displacement of the capitellum.

Distal humerus fractures

Common Pediatric fractures

Supracondylar fracture

Which nerve is never affected by this fracture ?

- a. Axillary nerve
- b. Radial nerve
- c. Median nerve
- d. Ulnar nerve
- e. Anterior interosseous nerve

Complications and deformities of supracondylar fracture

Cubitus varus (gunstock deformities)Cubitus valgus

Distal humerus fractures

Common Pediatric fractures

Lateral condyle Fracture

(5) what is your diagnosis ?

 \odot Lateral condyle Fracture

What is the Management ?

 \odot Closed or open reduction with internal fixation

(2) منوات (2) Mention one complication of this fracture

 $\circ \, \text{Hemarthrosis}$

- \odot May damage the growth plate.
- \odot Nonunion can happen due to synovial fluids
- Malunion can occur (cubitus valgus)

Distal humerus fractures

Common Pediatric fractures

Medial condyle fracture

What is your diagnosis ?

 \circ Lateral condyle Fracture

What is the Management ?

Closed or open reduction with internal fixation

Elbow joint

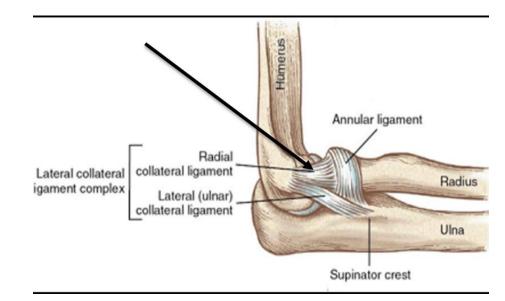
Three articulations

- \circ Humeral (trochlea)–ulnar
- \circ Humeral (capitellar)–radial
- \circ Proximal radioulnar (PRUJ)

Ligaments are the man stabilizers of the elbow joint

Muscles

- \circ Lateral epicondyle
 - Common extensor of the wrist
 - Radial Nerve
- \circ Medial Epicondyle
 - Common flexor of the wrist
 - Ulnar Nerve



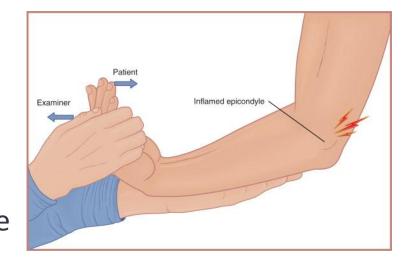
سنوات (1)

Anatomy question

*****What is the name of this structure ?

 \circ Radial collateral ligament

Pathology of muscles


Lateral epicondylitis (Tennis Elbow)

- ECRB muscle
- \odot Forceful repetitive wrist extension
- Examination: Cozen's test; Localized tenderness
- Management: Rest & NSAIDs, Counterforce brace Assessment

Medial Epicondylitis (Golfer Elbow)

- New studies show all muscles of common flexor tendon (CFT) affected except palmaris longus
 Examination: Medial epicondylitis test
- Management: Rest & NSAIDs, Counterforce brace

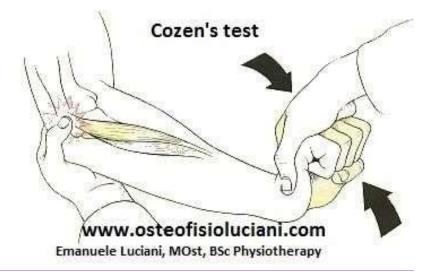
Pathology of muscles

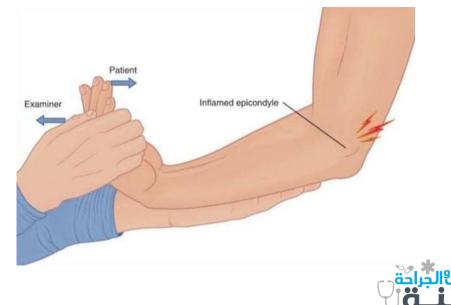
- Elbow pain exacerbated by hand movement and resisted wrist extension
- What is your diagnosis ?

 \circ lateral epicondylitis (Tennis elbow)

What is the affected tendon ?

 \circ ECRB


Elbow pain exacerbated by hand movement and resisted wrist flexion


What is your diagnosis ?

 \circ Medial epicondylitis

What is the affected nerve ?

 \circ Ulnar nerve

Olecranon bursitis (Student's elbow)

Enlarged bursa as a result of continual pressure or friction

Causes

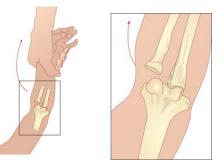
o **Trauma**

 \circ Gout \rightarrow calcification on the xray

 $\circ RA$

Pulled elbow (Nursemaid elbow)

*Definition


 Subluxation of the radial head, facilitated by the weakness of the immature annular ligament, causing the radius to slip out of the annular ligament and the annular ligament to become entrapped within the humeroradial joint

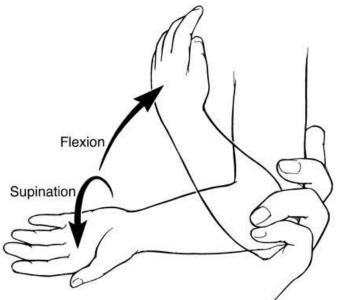
Epidemiology

- \circ Age: 1–5 years (peak incidence between two and three years)
- Radial head subluxation is the most common elbow injury in children under 5 years of age and occurs exclusively in this age group.
- o Sex: ♀ > ♂

Mechanism of injury

- \circ Traumatic (most common)
 - Sudden axial traction of the pronated and extended forearm
 - Typical activities: adult quickly pulls up a falling child by the hand, swings a child by the hands, or drags a child by the arm (hence the term "nursemaid's elbow")

Common Pediatric fractures


Pulled elbow (Nursemaid elbow)

Clinical features

Painful arm and irritable child
History of the child being hold from the arm & crying
The forearm is held in pronation & extension.
No X-ray changed.

Management

 \odot Supination and hyper-flexion of the elbow

Elbow dislocation

Epidemiology

Second most frequently dislocated joint (after the shoulder joint)

 \circ Sex: $\sigma > \varphi$

 \odot Peak incidence: 10–20 years; usually sports injuries

*Mechanism of injury: Trauma

○ Fall on an outstretched hand (most common) → posterior elbow dislocation
 ○ A posterior, direct trauma to a flexed elbow → anterior elbow dislocation
 ○ Medial/lateral trauma to the elbow → medial/lateral elbow dislocation
 ○ High impact trauma to the elbow → divergent elbow dislocation

Classification

Anatomical classification: Posterior, Anterior, Medial, Lateral, Divergent
 Presence of co-existent fractures: Simple dislocation, Complex dislocation

Imaging

- X-ray of the elbow joint
 - \odot AP view and lateral view to confirm dislocation and exclude fracture
 - Posterior fat pad sign: seen in patients with concomitant fractures (usually of the humerus/radial head)
 - Radiocapitellar line: on a lateral x-ray of the elbow joint, an imaginary line drawn through the center of the neck of the radius should pass through the center of the capitellum of the humerus. If an elbow dislocation is present, the line does not intersect the capitellum.
- CT scan of the elbow joint: indicated only if a complex elbow dislocation is suspected to evaluate the extent of associated fractures

Management

Conservative management

O Indication: simple elbow dislocation (no fracture)

$\circ \textbf{Procedure:}$

- 1. Obtain prereduction x-rays and check neurovascular status
- 2. Closed reduction; Signs of successful reduction: return of the normal triangular orientation of the 3 bony prominences of the elbow; decrease in pain
- 3. Post-reduction x-rays are obtained, and neurovascular status should be rechecked
- 4. Immobilization of the relocated elbow in a posterior splint or brace, in pronation and 90° flexion for 7–10 days

Management

Surgical intervention

 Indication: complex elbow dislocation (concomitant fracture); failed closed reduction; joint instability post-reduction; vascular injury

\circ Procedure

- 1. Closed reduction of elbow
- 2. Open reduction and internal fixation of the fractured segments and repair of the torn medial and/or lateral collateral ligaments of the elbow

\odot After surgery

- Obtain elbow x-rays
- Check neurovascular status of the forearm and hand
- Immobilization of the elbow in a posterior splint or brace in pronation and 90° flexion for 3 weeks

Rehabilitation: range of motion exercises (active and passive)

Elbow dislocation

What is the type of dislocation in this photo ?

 \odot Simple dislocation, posterolateral

What is your management ?

- 1. Prereduction X-rays and neurovascular status
- 2. Closed reduction
- 3. Post-reduction X-rays and neurovascular status
- 4. Immobilization for 7–10 days

What is the terrible triad (bad prognosis) of the elbow dislocation ?

- \odot Dislocated elbow
- \circ Radial head fracture
- Coronoid process fracture

Olecranon fracture

* Epidemiology

 \odot Rare in children, Common in adults

Mechanism of injury

- $_{\odot}$ Avulsion fracture: Tension applied by the triceps with flexion of the elbow \rightarrow transverse fracture
- \circ Direct trauma \rightarrow Comminuted fracture
- \odot Indirect trauma: by falling and landing with an outstretched arm

∜X-ray

 AP view, Lateral view, Oblique view; sometimes helpful, especially for radial head)

Management: Anatomical reduction; intra-articular fracture

- \odot Simple transverse fracture: Tension band
- \odot Comminuted fracture: Plates and screws

Olecranon fracture

*****What is the pattern of this fracture ?

 \circ Transverse

What is the most likely mechanism of injury ?

 \odot Avulsion fracture by the triceps

What is the management of this fracture ?

 \odot Open reduction with tension wire banding

Elbow distortions

- Cubitus varusCubitus valgus
- Hyperextension

Forearm

Which nerve supply this muscle ?

- a. Ulnar
- b. Median
- c. Radial
- d. Axillary
- e. Musculocutaneous nerve

Brachioradialis muscle

Forearm fractures

Clecranon fracture (discussed earlier)

- Radial neck fracture
- Monteggia fracture: proximal (or middle) ulnar fracture with concomitant dislocation of the radial head
- Galeazzi fracture: radial shaft fracture with disruption of the distal radioulnar joint
- Parry fracture: isolated fracture of the ulna (typically a defensive injury)
- **Complete forearm fracture**: fracture of the radial and ulnar shafts
- Distal Radius Fractures

Common Pediatric fractures

Radial neck fracture

* Epidemiology

O ChildreN: Neck

○ ADults: HeaD

Mechanism of injury

 Fall on the outstretched hand forcing the elbow into valgus & pushing the radial head against the capitulum

Clinical features: Signs of fracture with Pain on rotating the forearm

Management

- Less than 30° radial head tilt & up to 3 mm of transverse displacement: Casting for 2-3 weeks then ROM
- \odot If >30°: Either closed or open reduction with splinting

Common Pediatric fractures

Radial neck fracture

What is your diagnosis ?

○ Radial neck fracture

What nerve is affected by this fracture ?

 \odot Posterior interosseous nerve

What is your management ?

 \odot Either closed or open reduction with splinting

Monteggia fracture

Definition: proximal (or middle) ulnar fracture with concomitant dislocation of the radial head

Mechanism of injury

• Low-energy trauma, e.g., fall on outstretched and pronated forearm

 \odot High-energy trauma, e.g., direct blow to the forearm from a motor vehicle accident

Clinical features

- \odot Pain, deformity, and limited range of movement of the elbow joint
- \odot Paresthesia at or below the elbow joint
- Possibly nerve injury: most commonly posterior interosseous nerve palsy

Diagnostics: X-ray shows a fracture of the proximal (or middle) ulna with dislocation of the radial head (dislocation can be anterior, posterior, or lateral).

Management

- \odot In children with uncomplicated fractures: closed reduction and casting
- In adults or complicated fractures in children: open reduction and internal fixation (plating, K-wire fixation)

تجميعة سنوات

Monteggia fracture

(2) سنوات (2) What is the type of the fracture ?
O Monteggia fracture

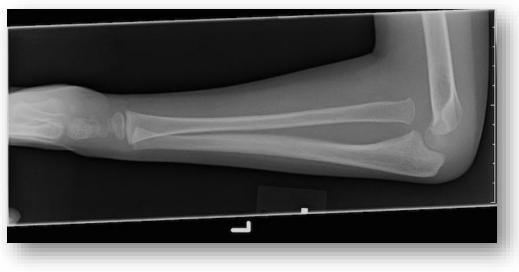
(۱) منوات (۲) Which nerve is affected in this fractured?

 \odot Posterior interosseous nerve

(2) سنوات (2) what is the function of the nerve injured in this fracture ?

 \odot Extension of MCP joint

Which radiological sign is important during forearm x-ray interpretation to rule out this type of fracture ?


○ Radiocapitellar line

VERY IMPORTANT NOTE

- Radiocapitellar line is very important during forearm x-ray interpretation as it help us diagnose radial head dislocation especially in pediatrics
- Radiocapitellar line: A line drawn down the neck of the radius should intersect the capitellum. If the line does not intersect the capitellum, there is radial head dislocation.
- In this photo no discontinuity of the bone is seen thus it can be misdiagnosed as normal.
- When we use the radiocapitellar line, there is radial head dislocation and as we concentrate on the ulna, a bowing fracture (plastic deformity) is present, so this is a Monteggia fracture.

Galeazzi fracture

Definition: radial shaft fracture with potential disruption of the distal radioulnar joint

Epidemiology: more common in children

Mechanism of injury: fall on outstretched and pronated forearm

Clinical features

- \circ Pain, deformity, and limited range of movement at the distal-third radial fracture site and wrist joint
- Anterior interosseous nerve (AIN) palsy can occur.

Diagnostics: x-ray

- Shows a fracture of the junction of the distal third and middle third of the radius shaft with subluxation or dislocation of the distal radioulnar joint
- \odot A tear in the interosseous membrane can only be seen indirectly on the x-ray.

Management

- \odot In children with uncomplicated fractures: closed reduction and casting
- \circ In adults or complicated fractures : open reduction and internal fixation (plating, K-wire fixation)

Galeazzi fracture

What is your diagnosis ?

 Galeazzi fracture (fracture of radius and dislocation of ulna)

Which nerve is affected in this fractured?

 \odot Anterior interosseous nerve

What is your management ?

 \odot Open reduction and internal fixation (ORIF)

In ER do AP x-ray with the next step?

- a. Lateral X-RAY
- b. Splint
- c. Ask for MRI
- d. Surgery
- e. Reduction

To rule out potential DRUJ instability

Distal radius fractures

Epidemiology: Bimodal peak incidence

 10–30 years of age; typically, due to high-energy trauma in males (The most common sites of childhood fracture)

 > 65 years of age; typically, due to low-energy trauma in women with osteoporosis

Mechanism of injury

 \odot Fall onto an outstretched hand

- Dorsiflexed wrist (a typical protective action used to break one's fall) → extension fracture (Colles fracture)
- Palmar-flexed wrist → flexion fracture (Smith fracture)

Classification

Colles fracture

 \odot Extension fracture

 \odot The distal fragment is usually radially and dorsally displaced.

Smith fracture

 \circ Flexion fracture

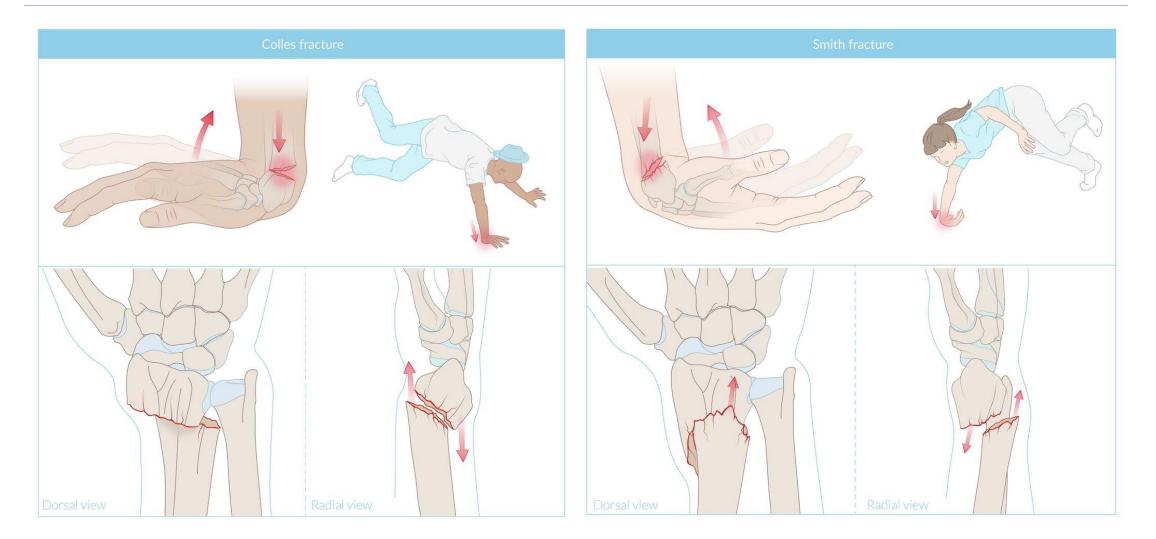
 \odot The distal fragment is radially and volarly displaced.

Barton fracture

 \odot Extension fracture

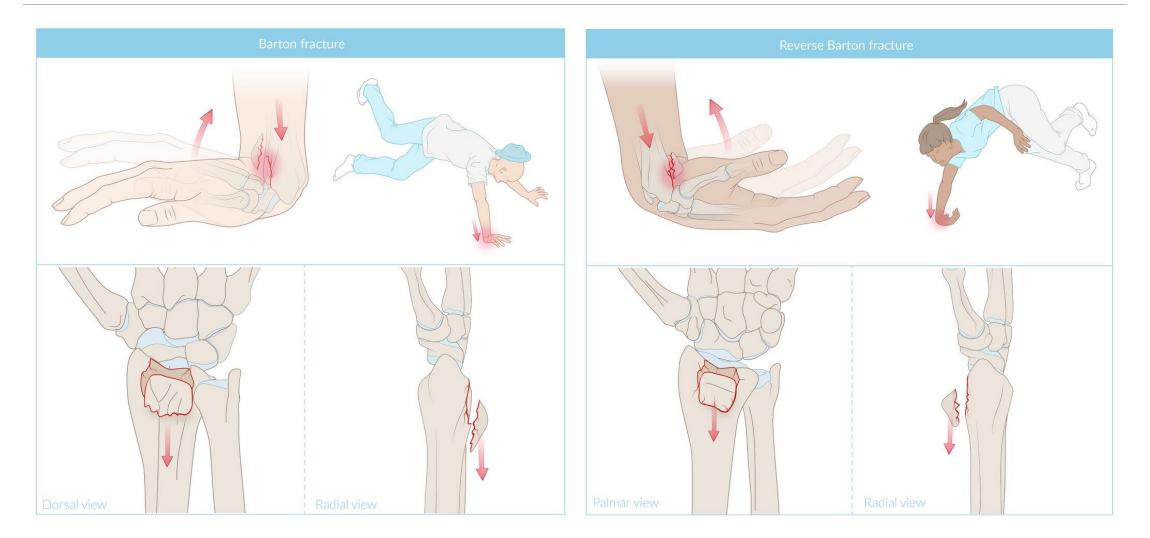
 \odot Involves radial avulsion and dorsal displacement of the radiocarpal segment

Reverse Barton fracture

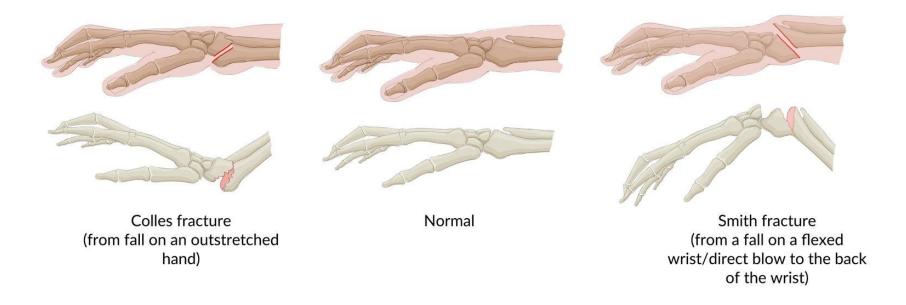

 \circ Flexion fracture

 \odot Involves avulsion and volar displacement of the radiocarpal segment

Hutchinson fracture: avulsion fracture of the radial styloid

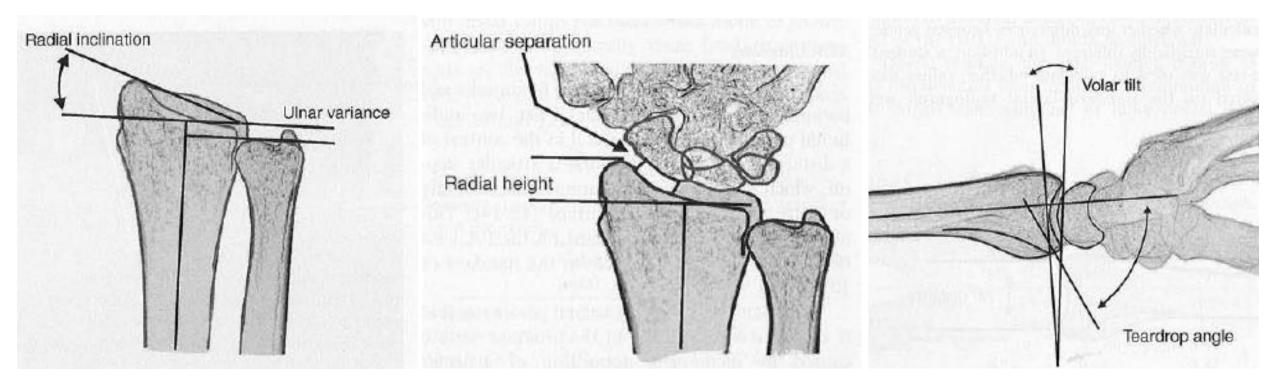


Classification


Classification

Clinical features

- Pain, tenderness, and soft tissue swelling
- Reduced range of motion at the wrist joint
- Wrist deformities based on the type of fracture
 - Colles fracture: dorsally displaced and dorsally angulated fracture (bayonet or dinner fork deformity)
 - \odot Smith fracture: garden spade deformity



Diagnostics

- Clinical evaluation: peripheral perfusion, motor function, sensation and handedness (influence the management)
- X-ray: 3views; anterior-posterior, lateral, and oblique view of the wrist (including the carpal bones)
 - Radial inclination: In the posteroanterior view of a normal wrist joint, a line that is drawn tangential to the radial styloid, connecting the ends of the distal radius, makes a 30^o angle with a line drawn perpendicular to the long axis of the radius
 - Volar inclination: In the lateral view of a normal wrist joint, a line that is drawn parallel to the articular surface of the distal radius makes a 10° angle with a line drawn perpendicular to the long axis of the radius.

Diagnostics

Management

Conservative therapy

Closed reduction while applying longitudinal traction through the fingers
 Dorsal forearm splint/casting and post-reduction x-rays

 \odot Cast removal after 6 weeks

Surgical therapy

 $\circ \text{Indications}$

- Open, significantly displaced, intra-articular, and/or unstable fractures
- Neurovascular damage

 \circ Procedures

- Open reduction and internal fixation
- K-wire fixation
- Internal fixation with fixed-angle plates
- External fixation

 \odot Postoperative immobilization of the forearm and in a dorsal forearm splint

The treatment of this fracture is

- a. Closed reduction and casting at ER
- b. Closed reduction and casting at OR
- c. Open reduction and fixation with plate
- d. Open reduction and fixation with cast
- e. Total wrist replacement

This pt. is presented to ER

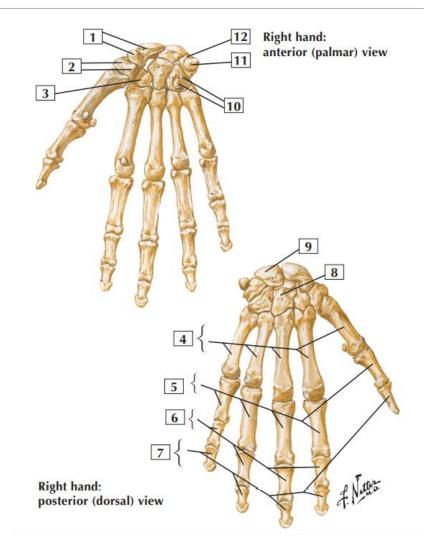
Mention 4 structure may be injured (2 tendons, 1 artery, 1 nerve)

Palmaris longus, Flexor carpi radialis tendons
 Median nerve

 \odot Ulnar artery, radial artery

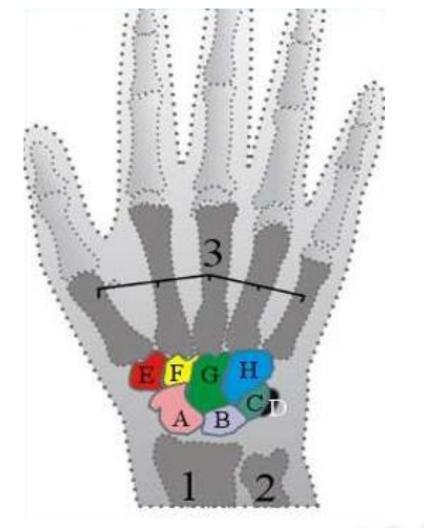
*****What is the medico-legal importance ?

 \circ Suicidal attempt



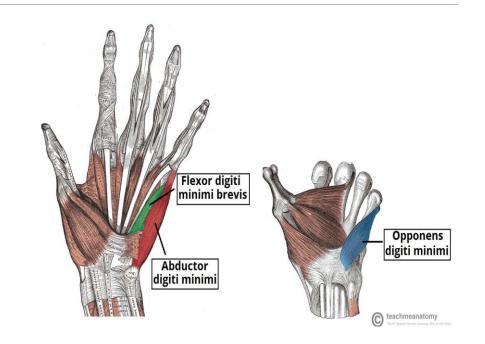
Za Hando

Bones of Wrist and Hand


- 1. Scaphoid and Tubercle
- 2. Trapezium and Tubercle
- 3. Trapezoid
- 4. Metacarpal bones
- 5. Proximal phalanges
- 6. Middle phalanges
- 7. Distal phalanges
- 8. Capitate
- 9. Lunate
- 10. Hamate and Hook
- 11. Pisiform
- 12. Triquetrum

The name of the bone in green marked with letter G is

- a. Scaphoid
- b. Capitate
- c. Lunate
- d. Pisiform
- e. Trapezium



ىنوات (1)

سنوات (1)

Anatomy question

Scaphoid fracture

*Epidemiology

Most common carpal bone fracture (50–80%)

 \odot Peak incidence: 15–19 years

Mechanism of injury

 \odot Indirect trauma when an individual falls onto the outstretched hand with a hyperextended and radially deviated wrist

Classification: According to the localization of the fracture

 \circ Proximal third, Middle third (Most common), Distal third

Clinical features

 \odot Pain when applying pressure to the anatomical snuffbox

Diagnostics

1. Best initial test

x-ray of the wrist in a posteroanterior, lateral, 45° oblique, and possibly scaphoid view (a x-ray view with ulnar deviation of the wrist and full pronation of the forearm to eliminate overlapping shadows of the radius)
 ~ 25% of scaphoid bone fractures are initially undetectable on x-ray.

2. If initial x-ray is negative, one of the following

If the patient is not willing to immobilize the wrist: MRI of the wrist
 If the patient is willing to immobilize the wrist: cast the wrist and repeat an x-ray in 10–14 days

3. If repeat x-ray is normal but continued clinical suspicion of scaphoid fracture: MRI of the wrist

Management

Pain management:

 \odot Over-the-counter analgesics $% i=1,2,\ldots,2$ and strengthening exercises

Nondisplaced fractures or displaced fractures < 1 mm:</p>

 \odot Wrist immobilization via thumb spica cast for a minimum of 6–8 weeks with x-ray re-evaluation in 2 weeks

Surgical treatment

 \odot Usually, internal fixation

 \odot Indications are complicated cases that include:

- Displaced fractures > 1 mm
- Open fractures
- Proximal pole fractures high risk of AVN

Complications

- Avascular necrosis (especially in proximal fractures that disrupt blood flow from branches of the radial artery) of the scaphoid bone in up to 50% of cases
- Nonunion (especially in proximal fractures) in approx. 10%
- Delayed union of fracture (more common in smokers)
- Instability among carpal joints
- Post-traumatic arthritis

Note: Fractures in the distal third tend to heal better because of the retrograde blood supply reaching the bone from the distal pole.

Scaphoid fracture

(1) سنوات (1) What is your diagnosis ?

 \circ Scaphoid fracture

(1) سنوات (1) What is the most common complication for this fracture ?

 \circ Avascular necrosis

(۱) سنوات (۱) Mention other complications

 \circ Carpal tunnel

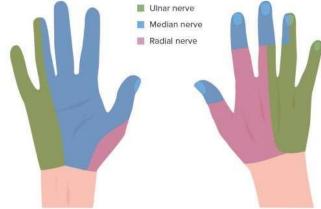
 $\circ \, {\rm Osteoarthrosis}$

سنه ات

- Epidemiology: Most commonly involve the 5th metacarpal (Boxer fracture)
- Mechanism of injury: Direct or indirect trauma to the metacarpal bones (e.g., striking a firm object with a clenched fist)
 - o 4th metacarpal: Professional boxer fracture
 - \circ 5th metacarpal: Non-professional boxer fracture
- ***X-ray**: Definitive diagnosis typically requires three radiographic views: anteroposterior, lateral, and oblique
- Management: The majority of metacarpal fractures can be treated conservatively: Closed reduction and immobilization

Mechanism of injury: Direct or indirect trauma

Management


- \odot The majority of metacarpal fractures can be treated conservatively
- Angulation or displacement consider surgical (any displacement will result in discrimination between bone and tendon length resulting in weakness)
- Tuft fractures are managed as an open fracture (4As)
 - 1. Analgesia
 - 2. Anti-tetanus
 - 3. Adequate irrigation and debridement within 4-8 hrs
 - 4. Antibiotic prophylaxis: first or second generation cephalosporine + aminoglycoside (high energy) + penicillin (barnyard).

Hand Muscles

Which of the following muscles is not supplied by the nerve that supplies the blue area

- a. Adductor pollicis
- b. Flexor pollicis brevis
- c. 1st thenar
- d. 2nd thenar

Which of these muscles is supplied by nerve which highlighted with green color

- a. Adductor pollicis
- b. 1st lumbrical
- c. Second lumbrical
- d. Oppones policies
- e. Flexor pollicis brevis

Hand infections & Common Hand Disorders

Hand infection – Principles of treatment

*Antibiotics

 \odot flucloxacillin, fucidic acid or cephalosporin

Rest, splintage and elevation

- The hand must be splinted in the position of safe immobilization
 - With the wrist slightly extended
 - The MCP joints in full flexion
 - The IP joints extended
 - the thumb in abduction

* Drainage

 The incision should be planned to give access to the abscess without causing injury to other structures but never at right angles across a skin crease

*Rehabilitation

Cellulitis

Definition: Acute inflammation of the connective tissue of the skin

Etiology: Most common: Streptococcus, Staphylococcus

Clinical features: Red, hot, irritated and painful "Tight, glossy, "stretched" appearance of the skin" with Skin lesion or rash (macule)

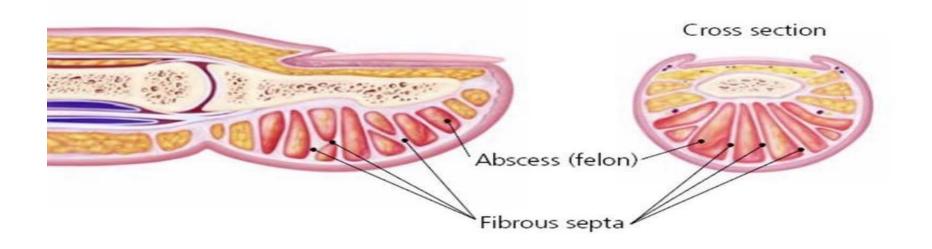
Treatment: Antibiotic / NSAID / Splintage

Paronychia

- Definition: infection of the perionychium (also called eponychium), which is the epidermis bordering the nail ,it is the commonest hand infection
- **Etiology**: Staphylococcus aureus and Streptococcus pyogenes
- Clinical features: The edge of the nail-fold becomes red and swollen and increasingly tender. A tiny abscess may form in the nail-fold

Treatment:

- \odot Antibiotics and frequent warm soaks
- \circ If pus is present, it must be released by an Incision at the corner of the nailfold in line with the edge of the nail
- \circ If pus has spread under the nail, part or all of the nail may need to be removed
- Chronic paronychia: due to fungal infection or inadequate drainage of an acute infection



Pulp space infection

What is the pulp space ?

- The distal finger pad is essentially a closed fascial compartment filled with compact fat and subdivided by radiating fibrous septa
- A rise in pressure within the pulp space causes intense pain and, if unrelieved, may threaten the terminal branches of the digital artery which supply most of the terminal phalanx

- **Etiology**: usually due to prick or splinter injury
- Microbes: Staphylococcus aureus
- Clinical features: The fingertip is swollen, red and acutely tender
- Treatment: Antibiotics, if pus has formed it must be released via a small incision over the site of maximal tenderness

Complications:

- o steomyelitis
 o sinus formation
 o digital vessel obliteration
 o flexor tenosynovitis
- \odot septic arthritis of DIPJ

Herpetic whitlow

- **Etiology**: HSV-1; auto-inoculation or during dental surgery
- Clinical features: Small vesicles form on the fingertip, then coalesce and ulcerate
- Treatment: Aciclovir

Deep fascial space infection

Etiology

 \odot Directly by penetrating injuries

 \odot Secondary spread from a web space or an infected tendon sheath

- Clinical features: Little or no swelling but extensive tenderness and the patient holds the hand as still as possible
- Occasionally, deep infection extends proximally across the wrist, causing symptoms of Median nerve compression

Bites

Dog bite (70%)	Cat bite (10%)	Human bite (15%)
Rarely involve hand (lower part of body)	More frequently lead to infection, deeper penetration (in face)	 Often delayed presentation May not give accurate history Fist fights cause 60-80% of human bites
Streptococcus, Staphylococcus, Pasteurella multocida	> 50% Pasteurella multocida	S. aureus, Streptococci
irrigation, debridement, delayed 10 suture, Augmentin	Antibiotics and surgical drainage	Augmentin

- Human bite injuries to the hand usually result from a direct bite or a "fight bite" (also known as a "clenched-fist" injury).
- Direct human bite injuries are often visually evident. A clenched-fist injury typically is characterized by a 3- to 5-mm laceration on the dorsum of the hand or overlying an MCP joint
- A tooth may penetrate an extensor tendon and MCP joint capsule, sometimes fracturing a metacarpal or phalangeal bone .
- Do x-ray: to exclude fractures

Tendon sheath

- The tendon sheath is a closed compartment extending from the distal palmar crease to the DIP joint.
- In the thumb and little finger, the sheaths are coextensive with the radial and ulnar bursae, which envelop the flexor tendons in the proximal part of the palm and across the wrist; these bursae also communicate with Parona's space in the lower forearm

Tenosynovitis

Tenosynovitis is the inflammation of a tendon (tendinitis) and its synovial sheath (synovitis)

Etiology

Non-infectious tenosynovitis (most common)

- Overuse tendinitis: repetitive use of the involved tendon (e.g., texting, typing, gaming)
- Systemic diseases (e.g., rheumatoid arthritis, sarcoidosis, diabetes mellitus)
- \odot Infectious tenosynovitis
 - Direct inoculation following penetrating trauma
 - Animal/human bites
 - IV drug use
 - Thorn prick injuries
 - Hematogenous spread of infection
 - Neisseria gonorrhoeae
 - Mycobacterium tuberculosis

Tenosynovitis – Clinical features

Tendons of fingers and wrist are commonly affected

First sign: pain on passive extension of the affected tendon (affected fingers are slightly flexed at rest)

✤Swelling

- Palpable crepitation
- Fever and erythema in the case of bacterial infections

Late signs

- \odot Tenderness along the affected tendon
- Sharp, stabbing pain worsened by activity, followed by constant dull ache at rest

Tenosynovitis – Subtypes and variants

Pyogenic tenosynovitis

- Epidemiology: It is uncommon but Dangerous. It usually follows a penetrating injury
- Etiology: Staphylococcus aureus
- Management
 - Analgesics and broad-spectrum IV antibiotics (e.g., cephalosporins, clindamycin)
 - Splinting and elevation of the affected finger (to decrease the edema)
 - Surgery: incision and drainage, saline irrigation, and open debridement of necrotic/infected tissue

The main & first step in management is

- a. I.V antibiotic
- b. Oral antibiotic
- c. NSAIDs
- d. Steroid injection
- e. Surgery for drainage

ىنوات (1)

Tenosynovitis – Subtypes and variants

Stenosing tenosynovitis (trigger finger)

- Epidemiology: Sex: ♀ > ♂ (6:1), Age: > 40 years
- \odot **Etiology**: usually idiopathic

- Pathophysiology: fibrocartilaginous metaplasia of the tendon sheath of the A1 annular pulley → loss of smooth gliding of the finger flexor tendons under the annular pulley → finger gets locked in flexed position
- Clinical features (it's a clinical diagnosis)
 - Trigger finger: locking of a finger in flexed position which releases suddenly with a snap/pop on extension; often painful
 - Often associated with tenderness and a palpable nodule at the base of the metacarpophalangeal joint
 - Mostly affects thumbs and ring fingers

 \circ Management: corticosteroid injection \rightarrow refractory cases need operation

Stenosing tenosynovitis (trigger finger)

What is your diagnosis ?

○ Trigger Finger

What is your initial management ?

 \odot Corticosteroid injection

If this patient return to you with recurrence of the deformity within 4 months what is your management ?

 \odot Second corticosteroid injection

If this patient still refractory to your management what is your next step ?

 Surgery (incision over the distal palmar crease, or in the MCP crease of the thumb – the A1 section of the fibrous sheath is incised until the tendon moves freely

دعنة من عندى

Tenosynovitis – Subtypes and variants

De Quervain tenosynovitis

- Description: noninflammatory thickening of the tendons of the abductor pollicis longus and extensor pollicis brevis due to myxoid degeneration
- \circ **Epidemiology**: Sex: $\mathcal{P} > \mathcal{O}$, Age: 30–50 years

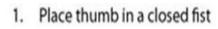
 $\circ \textbf{Etiology}$

- Repetitive/prolonged abduction and extension of the thumb: often seen in golfers and tennis players, individuals who text a lot, and young parents (due to the repeated strain of lifting the baby)
- Inflammatory conditions such as rheumatoid arthritis
- Clinical features (it's a clinical diagnosis)
 - Pain with or without swelling of the radial styloid
 - Pain may radiate to thumb or elbow, exacerbated by movement/grasping objects.
 - Positive Finkelstein test: examiner grasps the affected thumb and exerts longitudinal traction across the palm of the hand towards the ulnar side, which causes pain

De Quervain tenosynovitis

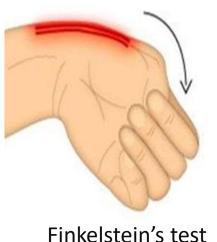
(5) What is this test used to diagnose ?

 \circ De quervain disease


(5) Which extensor compartment of the wrist is affected ?

 1st extensor compartment of the wrist (extensor pollicis brevis, abductor pollicis longus)

What is your management ?


- \odot NSAIDs and rest
- $\odot\,\mbox{Corticosteroid}$ injection

 Resistant cases need an operation, which consists of slitting the thickened tendon sheath

2. Tilt hand down

Carpal tunnel syndrome

Risk factors

 Previous fracture of the wrist, Manual work, Rheumatoid arthritis, Pregnancy, Osteoarthritis, Systemic amyloidosis, Renal failure and dialysis-associated deposition of amyloid, Diabetes mellitus, Hypothyroidism, Acromegaly

Clinical features

$\circ \, \text{Symptoms}$

- Develop in the areas innervated by the median nerve: palmar surface of the thumb, index, and middle fingers, and radial half of the ring finger.
 - Paresthesia: burning sensation, tingling, Loss of sensation/numbness, Pain
- Examination findings: thenar atrophy

Carpal tunnel syndrome

Diagnostics

 \odot Provocative tests for CTS

- Phalen test: The patient's wrist is held in full flexion (90°) for one minute
- Tinel sign: The examiner percusses or taps with the fingertips over the carpal tunnel

Electrophysiological tests: Nerve conduction studies (confirmatory test)

Treatment

 \circ Conservative management

- Immobilization
- Glucocorticoids: First-line: steroid injection, e.g., methylprednisolone

 \odot Surgery: Open or endoscopic release of the transverse carpal ligament

Epidemiology

 \circ Peak incidence: 40–60 years, Sex: >

*Etiology

 \odot The exact etiology is unknown

Predisposing factors

- \circ Genetic predisposition: ~ 70% of patients have a positive family history.
- Risk factors: these factors may cause ischemic injury of the palmar fascia with subsequent development of Dupuytren contracture in genetically predisposed individuals
 - Cigarette smoking, Recurrent trauma, Diabetes, Alcohol abuse, Liver cirrhosis

Pathophysiology

- Dupuytren's contracture (palmar fibromatosis) is a fibroproliferative disorder of the palmar fascia
- \circ Injury (trauma/ischemia) to the palmar fascia triggers myofibroblasts → fibroblast proliferation and collagen (collagen type III) deposition → thickening of the palmar fascia → formation of nodules in the palmar fascia
- \odot The nodules are adherent to the overlying dermis \rightarrow characteristic puckering of palmar skin
- \circ Nodules progress to form cords in the palmar fascia \rightarrow flexion contractures of the palmar fascia

Clinical features

- \odot The 4th and 5th fingers are most commonly involved
- \odot Skin puckering near the proximal flexor crease: earliest sign
- \odot Flexion contracture of affected fingers

- The initial description of Dupuytren's disease diathesis included 4 factors:
 - 1. The patient is below the age of 50 years old (middle age)
 - 2. Positive family history 60%
 - 3. Both of the hands are affected
 - 4. The palm is puckered, nodular and thick. (Garrod's pads)

Similar nodules may be seen on the soles of the feet Ledderhose's nodules

- Conservative therapy: Indicated in patients with early disease (skin puckering; nodules) and no functional disability.
 - Observation
 - \circ Physiotherapy
 - \odot Hand splint/brace

Intralesional injections: Indicated in patients with rapidly progressing disease or painful nodules

- Corticosteroids (triamcinolone)
- \circ Collagenase

Surgery: Indicated in patients with functional disability due to contractures

- \circ Fasciotomy
- \circ Fasciectomy

* Prognosis

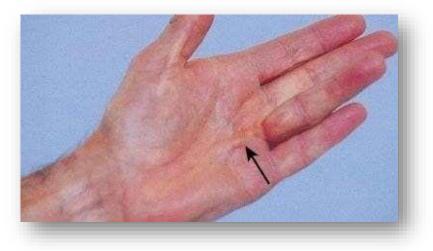
- \circ Variable prognosis
- \circ Recurrence rates are high, even after surgery (~ 60%)

Old age patient present with this lesion

What is your diagnosis ?

Dupuytren's contracture

If you find similar lesion on the patient soles, what are they called ?


 \circ Ledderhose's nodules

What is your management ?

 \circ Conservative

What are the risk factors ?

- Family history (most important)
- Cigarette smoking, Recurrent trauma, Diabetes, Alcohol abuse, Liver cirrhosis

Mallet finger

Affected tendon(s) or ligament(s)

 \odot Extensor digitorum tendon

Mechanism of injury

 \odot Sudden hyperflexion of the DIP (forced flexion) \rightarrow avulsion/rupture of the distal portion of the ED tendon from the distal phalanx

 \odot May be associated with an avulsion fracture of the distal phalanx

Clinical features

 \odot Loss of extension of the DIP

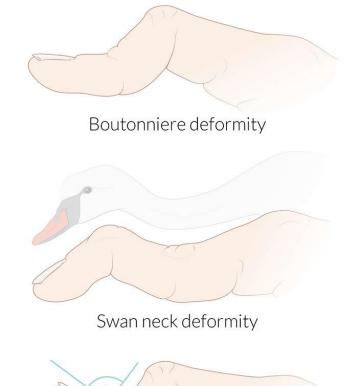
*****Treatment

- \odot Conservative: splint in extension position
- Surgical repair for: Displaced fracture, ≥ 45-degree extension deficit

Mallet finger

The deformity shown in this picture is • Mallet finger

What is the affected tendon ?


- a. Flexor digitorum profundus
- b. Flexor digitorum superficialis
- c. Extensor pollicis brevis
- d. Terminal extensor tendon

Hand manifestation in rheumatology

- Boutonniere deformity: PIP flexion and DIP hyperextension.
- Swan neck deformity: PIP hyperextension and DIP flexion
- Hitchhiker thumb deformity (Z deformity of the thumb): hyperextension of the interphalangeal joint with fixed flexion of the MCP joint
- Ulnar deviation of the fingers

Z deformity

What is your diagnosis ?

Syndactyly (fused finger)

It is considered the most common congenital malformation of the limbs

ىنوات (1)

Lower Limb

The name of the structures and the muscle attached to it

- 1. Sartorius ASIS
- 2. Hamstring muscle Ischial tuberosity
- 3. Hip rotator muscle Greater trochanter

Pelvic fracture

Epidemiology

 \circ Peak incidence: 15–28 years

 \odot 20% of multiple trauma patients have a pelvic injury.

 \odot 60% of patients with pelvic injury have multiple trauma.

Mechanism of injury

 \odot High speed car and motorcycle accidents

 \odot Falls, especially in the elderly

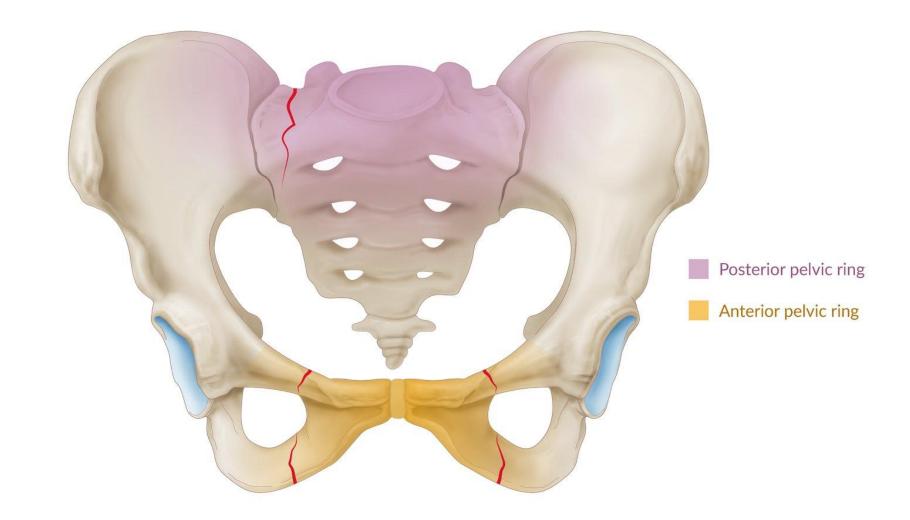
Clinical features

 \circ Pelvic pain

 \odot Tilted pelvis and unequal leg length with reduced range of motion in the hip joint

 \circ Pelvic instability

 \odot Labial, scrotal, flank, and inguinal hematomas

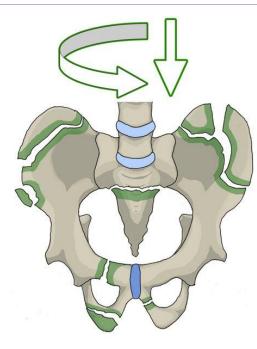

Pelvic fracture

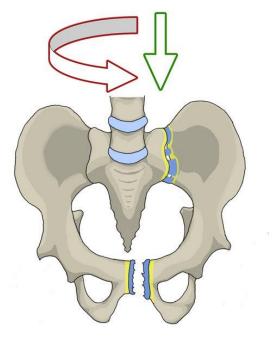
Concomitant injuries may occur

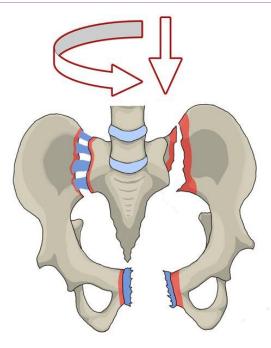
- O Urethral injury: blood at urethral meatus, high-riding or nonpalpable prostate, perineal swelling
- \odot Bladder injury: frank hematuria
- Rectal, vaginal, perineal lacerations suggest an open fracture
- Acute abdomen in abdominal trauma (bowel perforation, spleen, liver rupture)
- Neurovascular injury : decreased rectal tone, perianal paresthesia, compromise of lower limbs
- \odot Axial and long bone injuries

Classification – Pelvic ring

Classification


Classification is based on fracture location and remaining stability of pelvic ring


Type A: stable or minimally displaced (Isolated pelvis fracture)


- \circ Type A1: fracture of the pelvic edge (avulsion or pelvic wing)
- \odot Type A2: fracture of the anterior pelvic ring
- \odot Type A3: Transverse sacral fracture of the sacrum/coccyx
- Type B: pelvic ring fractures that are rotationally unstable and vertically stable (anterior and posterior pelvic ring affected)
 - Type B1: symphysic diastasis ("open-book" injury; external rotation)
 - Type B2: lateral compression injury (internal rotation)
 - **Type B3**: bilateral fractures
- Type C: injury of the pelvic ring with rotational and vertical instability (The posterior pelvic ring is completely unstable)
 - **Type C1**: unilateral fracture of the iliac bone (C1-1), sacroiliac dislocation (C1-2), or sacral fracture (C1-3)
 - Type C2: bilateral fracture with one side type B fracture and one side type C fracture
 - $\,\circ\,$ Type C3: bilateral fracture with bilateral type C fractures

Classification

A

Stable or minimally displaced fracture (fracture of the pelvic edge, the anterior pelvic ring, or the sacrum/coccyx)

В

Rotationally unstable, vertically stable fracture (symphysis diastasis, diastasis of the sacroiliac joint) Injury of the pelvic ring with rotational and vertical instability (anterior and posterior pelvic ring fracture with bilateral diastasis of the sacroiliac joint and symphysis diastasis)

Diagnostics

Pelvic X-ray: (anterior-posterior, as well as special inlet and outlet views; views of the obturator and ala): confirm pelvic fracture

- CT (in stabilized patients): detailed imaging (fractures, deformities) and the exclusion of further injuries (tissue, ligaments, intraabdominal organs)
- Angiography: diagnostic and therapeutic of vascular injury and active hemorrhage (e.g., superior gluteal artery)
- Suspected injury of the urinary tract
 - Retrograde pyelourethrogram
 - Only consider suprapubic catheterization, not transurethral, if confirmed!

Management

General: Prompt pelvic stabilization with an **external pelvic binder**

Conservative treatment

- Indication: stable pelvic fracture
- Methods: bed rest, analgesia, thrombosis prevention, early physical therapy, periodic blood pressure and hematocrit check

Surgical treatment

 Indication: open or unstable fractures, complications (e.g., urological injury), hemorrhage

\circ Procedures

- Emergency surgery in the case of massive bleeding: angiography with embolization of affected blood vessels, external fixation, or pelvic C-clamp if needed
- Definitive surgical treatment of the pelvic fracture and post-intensive care stabilization: stabilization and refixation of dislocated fragments, employing plates or screw external or internal fixation (for hemodynamically stable patients)
- Rapid treatment of concomitant injuries (urinary tract, sphincter, intestinal injuries)

Complication

- Intraperitoneal and retroperitoneal bleeding can cause hemorrhagic shock
- Abdominal compartment syndrome
- Thromboembolism (A pelvic injury always requires thrombosis prevention because of the high risk of thrombosis associated with it)
- Neurological injury: bowel and bladder incontinence, sexual dysfunction
- Sciatic nerve injury
- Persistent sacroiliac pain

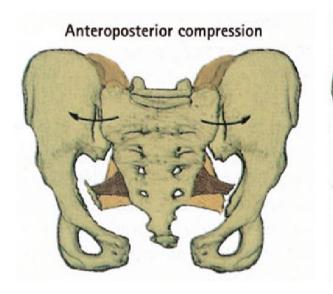
Patient suffer from left hip and thigh pain

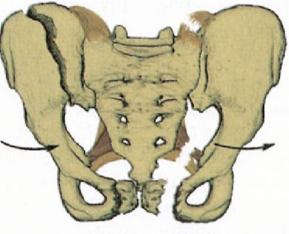
What is your diagnosis ?

 X-ray of pelvis demonstrating fractures of the left superior and inferior pubic rami.

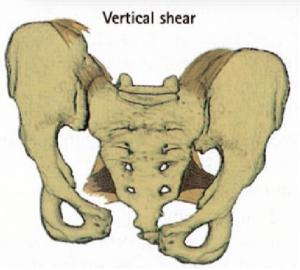
What is your management ?

- 1. External pelvic binder
- 2. Bed rest, analgesia, thrombosis prevention, early physical therapy, periodic blood pressure and hematocrit check

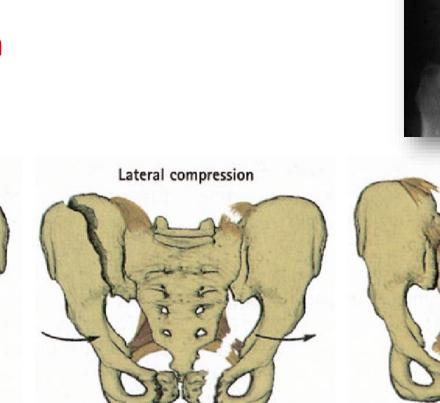



سنوات (2)

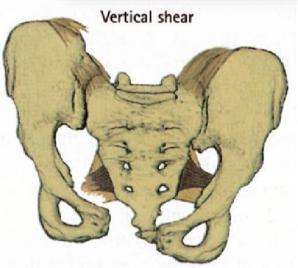
What is the mechanism of fracture ?


- a. Vertical shear
- b. Anteroposterior compression
- c. Stress fracture
- d. Lateral compression
- e. Avulsion

Lateral compression

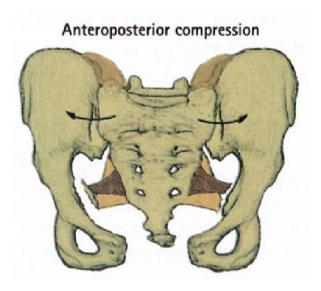

سنوات (1)

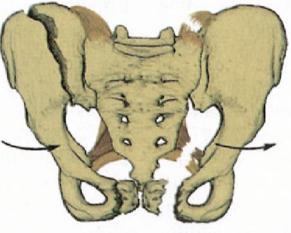
What is the mechanism of fracture ?


- a. Vertical shear
- b. Anteroposterior compression
- c. Stress fracture
- d. Lateral compression

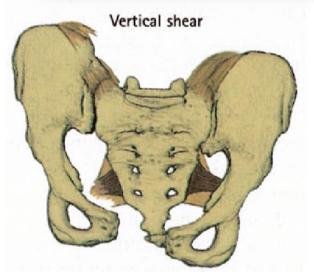
Anteroposterior compression

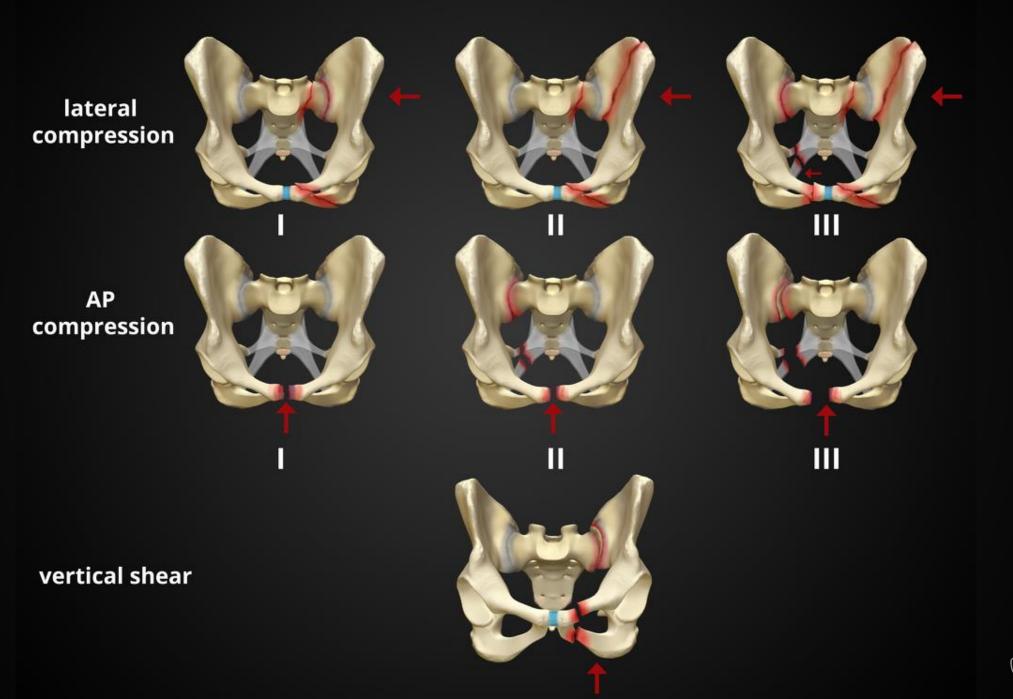
e. Avulsion fracture

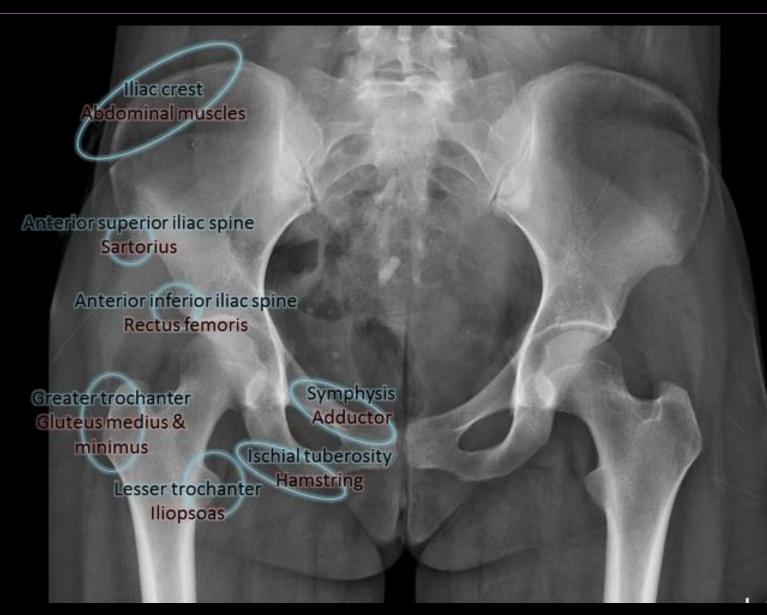




What is the mechanism of fracture ?


- a. Vertical shear
- b. Anteroposterior compression
- c. Stress fracture
- d. Lateral compression
- e. Avulsion


Lateral compression



Avulsion fractures and their muscles

سنوات (1) الخيارات من عندي

What is the muscle involved in this fracture ?

- a. Sartorius muscle
- b. Rectus femoris
- c. Gluteus Medius
- d. Iliopsoas
- e. Hamstring

The best easy initial management in suspected pelvic fracture ?

- a. Pelvic bender
- b. Angiography
- c. Open reduction
- d. Closed reduction

One of these sentences is wrong about this case

- a. Blood at the pubic area
- b. Shortening of the right leg
- c. Anteroposterior compression
- d. Weak upper and lower extremity pulse
- e. Absent ankle reflex

Acetabular fractures

Mechanism of injury: Head of the femur is driven into the pelvis

- \circ Blow on the side (as in a fall from a height).
- Blow on the front of the knee, usually in a dashboard injury when the femur also may be fractured.

Management

 \odot Conservative: indications:

- acetabular fractures with minimal displacement (in the weightbearing zone, less than 3mm.
- displaced fractures that do not involve the superomedial weightbearing segment (roof) of the acetabulum – usually distal anterior column and distal transverse fractures.
- a both-column fracture that retains the ball and socket congruence of the hip by virtue of the fracture line lying in the coronal plane and displacement being limited by an intact labrum.
- fractures in elderly patients, where closed reduction seems feasible.
- patients with 'medical' contraindications to operative treatment (including local sepsis)

Acetabular fractures

Complications

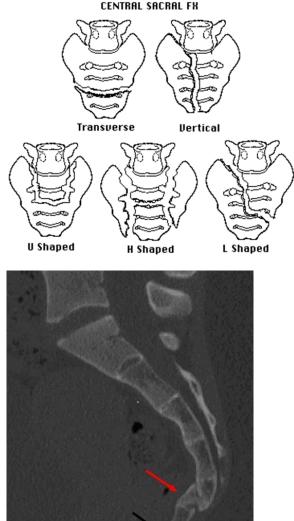
- \circ Iliofemoral venous thrombosis.
- Sciatic nerve injury (early complication)
- \odot Heterotopic bone formation.
- Avascular necrosis.
- \odot Loss of joint movement (stiffness).
- \circ Secondary osteoarthritis

Acetabular fractures

All of these are late complications except

- a. Nerve injury (sciatic nerve injury)
- b. Avascular necrosis
- c. Secondary osteoarthritis

Sacral and coccygeal fractures


Mechanism of injury

 Blow from behind of falling down into the tail may fracture the sacrum and coccyx or strain the joint between them.

Management

 \odot Rubber ring cushion when sitting.

 Persistent pain, especially on sitting, is common after coccygeal injuries. If the pain is not relieved by the use of a cushion or by the injection of local anaesthetic into the tender area, excision of the coccyx may be considered.

Hip fractures

Epidemiology

o Peak incidence: > 70 years

○ Sex: ♀ > ♂

Mechanism of injury: (most commonly due to)

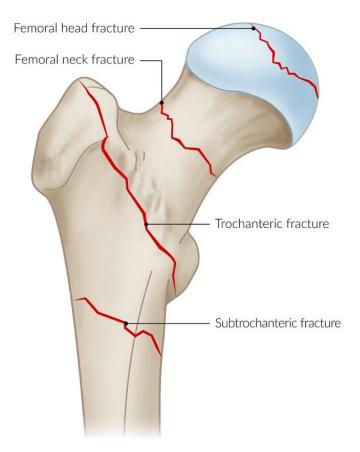
Older adults: Fall onto greater trochanter/lateral hip
 Children and young adults: high-speed trauma

Pathological fracture

Risk factors

- Osteoporosis (Osteoporosis related fracture)
- \odot Low body weight
- Poor nutrition (vitamin D deficiency or calcium deficiency)

Types of hip fractures


Hip fractures are divided into:

*Intracapsular

Femoral headFemoral neck

Extracapsular

- Trochanteric
 Intertrochanteric
- Subtrochanteric

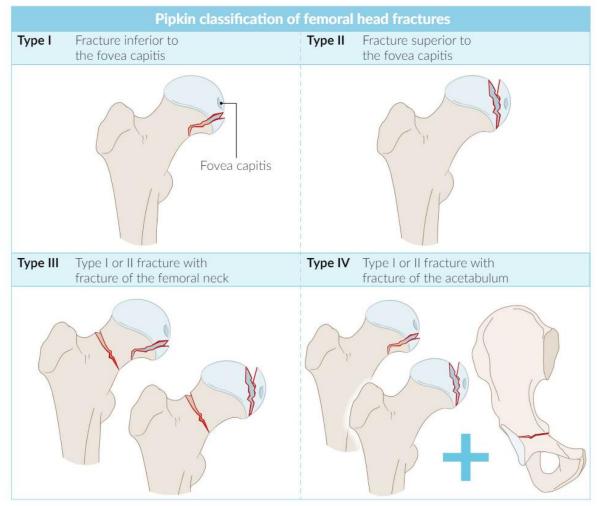
Femoral head fracture

Occurrence: uncommon but often associated with a posterior hip dislocation following a dashboard injury

Clinical features

 $\circ \operatorname{\textbf{Groin}} \operatorname{\textbf{pain}}$

 \odot Local swelling and ecchymosis


Diagnostics

 Hip x-ray (AP with internal rotation and lateral view; should include the proximal thigh): abnormal trabecular pattern, cortical defects, shortening and angulation of the femoral neck

- \odot X-rays of both hips should be made for comparison
- MRI if findings are unclear or if an occult fracture is suspected
- \odot Watch out for sciatic nerve injury in patients with femoral head fractures.

Femoral head fracture

Treatment

Type 1

Conservative: immobilization
 Surgical: ORIF

Type 2

 \circ Surgical: ORIF

*****Type 3 & 4

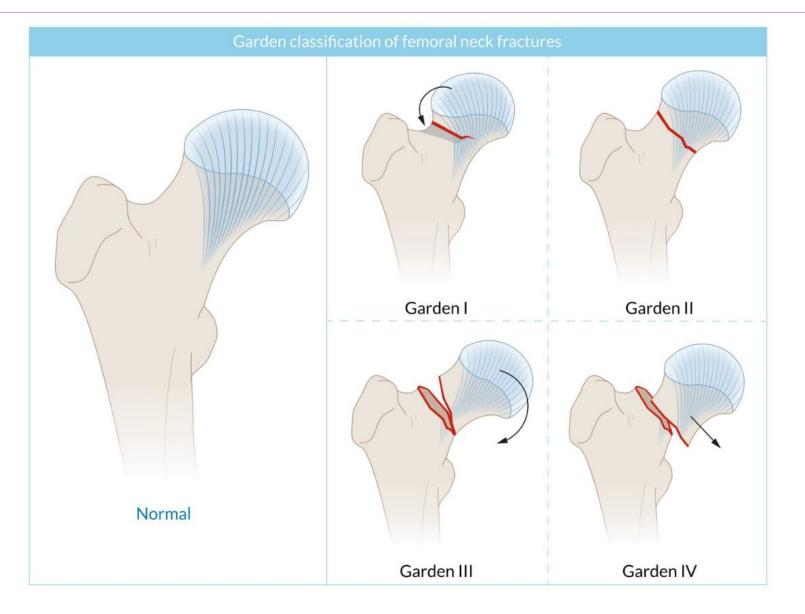
 Children & young adults: ORIF
 Older adults or those with predispositions or instabilities: total hip replacement

Femoral neck fracture

Clinical features

o Groin pain, Shortened and externally rotated leg, Minimal bruising

* Diagnostics


 $_{\odot}$ X-ray (AP and lateral view of the pelvis with internal rotation of the affected limb) $_{\odot}$ MRI or bone scan if clinical suspicion is high despite absent findings on x-ray

Classification

Garden Classification			
Garden I	Nondisplaced, incomplete, impaction fracture		
Garden II	Complete, but nondisplaced fracture		
Garden III	Partially displaced, complete fracture with medial contact of the fracture elements and varus displacement of the femoral head		
Garden IV	Entirely displaced, complete fracture		

Femoral neck fracture

Femoral neck fracture

Conservative management

 \odot Indication: stable, nondisplaced fractures, especially abduction fractures , mostly in debilitated patients

 $\circ\, \text{Methods}$

- Temporary bed rest or use of crutches followed by mobilization with physical therapy
- Venous thromboembolism prophylaxis

Surgical therapy (usually within 72 hours) is indicated for unstable fractures, typically adduction fractures, and fragment dislocation

 \odot For children and young adults

- Attempt preservation of the femoral head
- Early open reduction internal fixation (ORIF)(within 6 hours)

• For older adults: total hip replacement (THR) or hip hemiarthroplasty

Garden's classification of femur neck fracture ?

- a. Type 1
- b. Type 2
- c. Type 3
- d. Type 4
- e. Type 5

سنوات (1)

Trochanteric fracture

Clinical features

- A greater trochanter fracture is suggested by local pain exacerbated by abduction
- A lesser trochanter fracture presents with groin pain, which radiates to the knee or posterior thigh, and worsens with hip flexion and rotation

* Diagnostics

 \odot X-ray showing avulsion of the greater or lesser trochanter \odot MRI if a pathological fracture is suspected)

Treatment

- Most heal with conservative treatment (e.g., nonweightbearing)
- Surgical repair for displaced fractures (> 1 cm)

Intertrochanteric fracture

Clinical features

- \odot Hip pain and swelling
- \odot Shortened and externally rotated leg
- \circ Significant ecchymosis
- Often associated with other injuries (e.g., other extremity fractures)

Diagnostics

- X-ray (AP view with maximal internal rotation and lateral view): proximal femur fracture between the greater and lesser trochanters
- $\odot\,\text{MRI}$ if a pathological fracture is suspected

Intertrochanteric fracture

Treatment

 \odot Nonsurgical approach for high-risk patients \odot Surgery

- Dynamic hip screw (DHS) for stable fractures
- Intramedullary nail (Gamma nail) for stable or unstable fractures, fractures extending into the subtrochanteric region, or reverse oblique fractures
- Arthroplasty may be considered for comminuted fractures, pathological fractures, or if other surgical modalities fail.

Name of the fracture and it's management

- a. Femur Neck fracture, Hip replacement
- b. Femur Neck fracture, Fixation with plate and screws
- c. Intertrochanteric fracture, partial hip replacement
- d. intertrochanteric fracture, Fixation with plate and screws
- e. Sub-trochanteric fracture, Nail fixation

Subtrochanteric fracture

Clinical features

- \odot Hip pain with swelling
- \odot Shortened and externally rotated leg
- \odot Significant ecchymosis

Diagnostics

- \odot X-ray: fracture between the lesser trochanter up to 5cm below that (distally)
- \odot MRI if a pathological fracture is suspected

Treatment

- Consider conservative approach (e.g., traction) in surgically unstable patients
- Surgery is indicated in displaced/nondisplaced fractures in adults, especially if associated with multiple trauma, an open fracture, or pathological fractures
 - Long intramedullary nail with a lag screw
 - Locking plate may be considered for complicated fractures (e.g., preexisting femoral deformity, associated femoral neck fracture)

Subtrochanteric fracture

What is your diagnosis ?

 \odot Subtrochanteric fracture

Mention one muscle leads to the deformity

 \circ lliopsoas muscle

*****Treatment:

 \odot Surgery (open reduction and internal fixation)

Complications of hip fractures

Avascular necrosis (AVN) of the femoral head

- Fracture dislocations are at greatest risk of avascular necrosis of the femoral head.
- AVN is less common in intertrochanteric fractures, but the outcome is worse compared to femoral neck fractures.

Thromboembolism

 \odot Thrombolytic therapy reduces the risk of deep vein thrombosis in patients with hip fractures

Infection

- Chronic pain and posttraumatic arthritis
- Nonunion

Dislocation

Hip fracture-dislocation

Hip fractures, especially fractures of the femoral head, are often associated with a hip dislocation

Type of <u>hip</u> dislocation	Etiology	Clinical features	Diagnostics	Treatment	Complications
Posterior hip dislocation (90% of cases)	 Dashboard injury in which a posteriorly directed force (e.g., dashboard during a motor vehicle accident) is directed towards an internally rotated, flexed, and adducted hip 	 Hip pain which radiates to the knee Shortened, internally rotated (adducted) hip 	 X-ray CT/MRI to exclude associated (especially pathological) fractures 	 Closed reduction within 6 hours Open reduction if closed reduction is unsuccessful, the joint 	 Sciatic nerve injury or peroneal nerve injury (branch of the sciatic nerve)
Anterior hip dislocation (10% of cases)	• Direct blow to the posterior hip or to an abducted leg	 <u>Hip pain</u> which radiates to the <u>knee</u> Lengthened, <u>externally</u> rotated leg 		is unstable, or if bony fragments/tissue sit within the <u>joint</u> space	• Femoral nerve injury

Old age patient with history of falling down

(2) منوات (2) 🛠 What is your diagnosis ?

 \odot Posterior hip dislocation

(۱) سنوات (۲) How would he hold his limb سنوات (۱)

 \odot Slight flexion, adduction, internal rotation

(1) سنوات (۲) What is the most common affected nerve ?

 \circ Sciatic nerve

History of RTA

What is your diagnosis?

• Posterior hip dislocation

If there was blood at external genitalia, what injury do you suspect ?

 \circ Urethra

History of RTA

What is the most common affected nerve?

- \odot Sciatic nerve
- If This patient was hemodynamically stable What is the next step management of this patient ?
 - Closed reduction
 - \odot If failed open reduction

23 years old male fall of 3 meters and had hip dislocation

What is your diagnosis ?

- a. Osteoarthritis
- b. Osteonecrosis
- c. Focal femoral degeneration

Keep in mind when dealing with pediatrics

- The trauma that causes hip fracture in children is high energy trauma (RTA or Falling from Hight)
 - \odot Always role out other associated injuries
 - \odot If the trauma is not significant then Role out pathological fracture
- The fracture pattern may disrupt the blood supply of the proximal femoral head \rightarrow AVN
- Head and neck are worse than inter-troch and sub-troch
- Management: closed reduction and hip spica +- fixation
- Avoid injury to the proximal femoral physis when fixing.

Hip fracture in elderly

75 years old patient with right hip fracture Your management
• Hip replacement

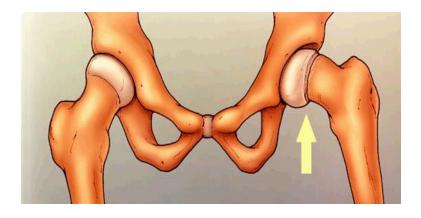
Pediatric Hip Disorders

Presentation

Hip pathology may cause

- \circ Groin pain
- \odot Referred thigh or knee pain
- \odot Refusal to bear weight
- Altered gait in the absence of pain
- Hip pain may also be referred from low back or pelvic pathology
- Any child with knee pain
 - \odot Examine hip range of motion
 - Prone and supine
 - Check AP and frog lateral hip films, particularly if limited hip motion

Slipped Capital Femoral Epiphysis (SCFE)


Definition: the posterior and inferior displacement of the femoral head in relation to the femoral neck at the proximal femoral growth plate.

*Epidemiology:

- \odot Most common hip disorder in adolescents
- \circ Peak incidence: 10-16 years
- Sex: ♂ > ♀
- Etiology: is not entirely understood

*Risk factors:

- \circ Obesity
- \circ Family history
- Endocrine or hormonal factors (e.g., hypothyroidism)
- \odot Trauma (e.g., sports-related injury or fall)

Slipped Capital Femoral Epiphysis (SCFE)

Pathophysiology:

 Poor cartilaginous maturation and endochondral ossification in the epiphyseal growth plate leads to unusually wide and unstable proximal femoral epiphyseal growth plate

 Increased shear force (e.g., due to obesity, trauma) across the growth plate leads to posterior and inferior displacement of femoral epiphysis from the femoral neck

*Onset:

 $\circ \, \text{Acute}$

Chronic (3 weeks to several months)

Acute on chronic (chronic with acute exacerbations)

Conting: bilateral in 20–40% of cases

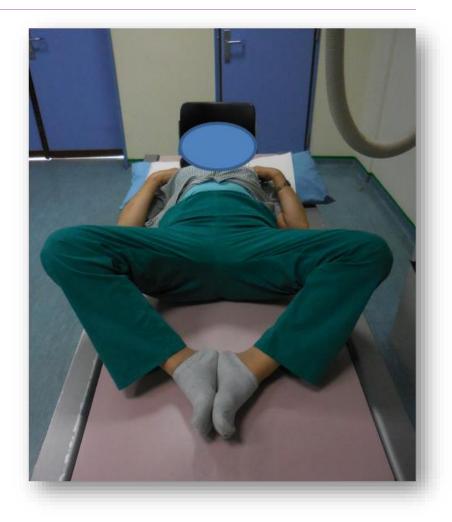
SCFE – Clinical features

Symptoms:

- Dull pain in the medial thigh, knee
 , groin, or hip (often left > right)
- 2. Limping
- 3. Restricted range of motion
- 4. Reduced internal rotation and abduction
- 5. Patients may hold their hip in passive external rotation
- 6. Drehmann sign positive: external rotation and abduction during passive flexion of the affected hip in supine position

Stability of the physis:

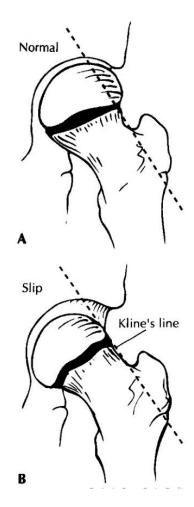
- Stable: able to bear weight on affected hip, with or without crutches
- Unstable : inability to ambulate and bear weight on affected hip, even with crutches and associated with a high risk of avascular necrosis


SCFE – Diagnostics

Imaging:

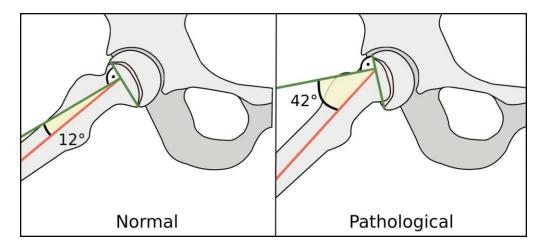
 \odot 2 views:

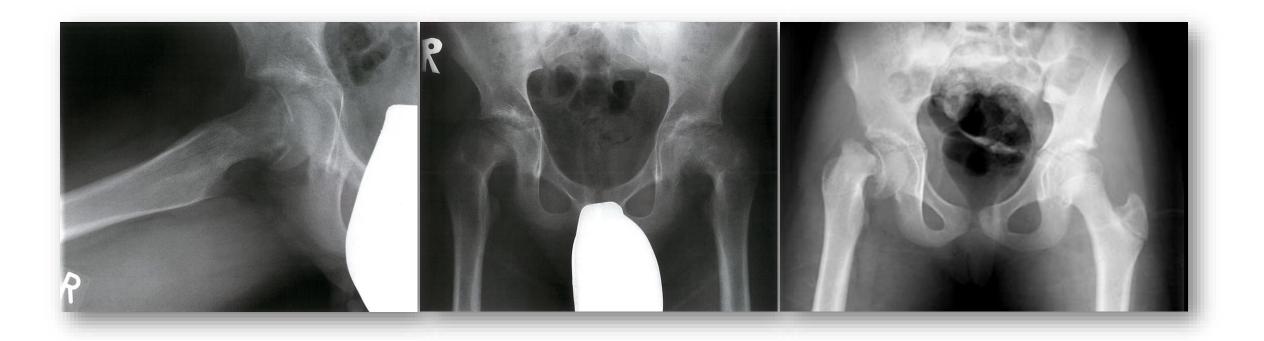
- AP pelvis x-ray
- Frog leg lateral view (supine position, flexion of 45° and abduction of 45° in the hip): It allows for better evaluation of both hips, femoral head and neck.


Laboratory tests: to exclude endocrinopathies in patients with an atypical age of onset or short stature

SCFE – Imaging Findings

- Widening of the joint space
- The femoral head is displaced posteriorly and inferiorly in relation to the femoral neck.
- Klein line not passing the femoral head: It is a straight line drawn along the superior border of the femoral neck that normally passes through the femoral head.
- Frog leg projection line not passing the femoral head: It is a line drawn through the center of the epiphysis that normally should pass through the center of the femoral neck.


Klein line


SCFE – Imaging Findings cont.

- Southwick method (for measurement of the slip angle/severity): refers to the tilt of the femoral neck in relation to the femoral head
- The angle of Southwick (yellow) is the angle between a line that is drawn perpendicular to a line connecting the ends of the epiphyseal plate (green) and a line drawn along the longitudinal axis of the femur (red).
- ✤A normal angle of Southwick is 12°.
- **SCFE** is classified as:
 - Mild: 13-30°
 Moderate: 30-60°
 - \circ Severe: >60°

Slipped Capital Femoral Epiphysis (SCFE)

Slipped Capital Femoral Epiphysis (SCFE)

Treatment:

- \odot Avoid weight bearing before stabilization
- O Urgent surgical internal fixation with pinning of the femoral head
- \odot Prophylactic fixation of the contralateral hip

Complications:

- \odot Avascular necrosis of the femoral head
- \odot Early hip osteoarthritis
- Chondrolysis of the hip: rapid degeneration of articular cartilage

↔DDx:

- Legg-Calvé-Perthes disease
 Transient synovitis
- \circ Septic arthritis

14 years old male presented with left knee pain


(5) What is the pathology in this X-ray 🕈 سنوات (5) • Slipped Capital Femoral epiphysis (3) what is the most appropriate management? • Fixation (1) سنوات (1) المنوات (1) • Hormonal imbalance ○ Obesity The affected layer in this deformity is سنوات (2) • Hypertrophic zone

سنوات (1)

SCFE hip presentation on AP pelvic view

- a. Internal rotation
- b. Abduction
- c. External rotation
- d. Adduction

Q9: 7 years old male presented with left knee pain

*****What is the most important lab test to do ?

- a. CBC
- b. Thyroid hormone
- c. KFT
- d. LFT
- e. ESR

Legg-Calve-Perthes

Definition: idiopathic, avascular necrosis of the femoral head

*****Epidemiology:

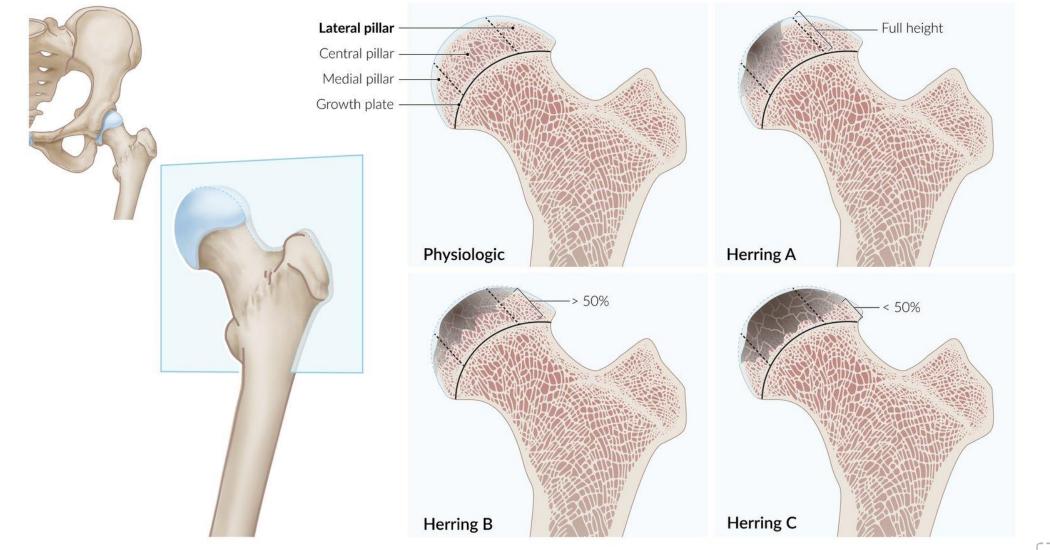
 \circ Sex: \circ > \circ (4:1), Age: 4–10 years

Etiology: Idiopathic disease

- Multiple factors might promote the development and progress of the condition, including:
 - Repetitive microtrauma (e.g., due to child's hyperactivity)
 - Bleeding disorders (e.g., excess factor VII, factor V Leiden, protein S deficiency)
 - \circ Genetic factors (e.g., possible mutations in COL2A1 gene)
 - Environmental factors (e.g., maternal smoking, secondhand smoke exposure)

* Pathophysiology:

 Avascular necrosis of the femoral head due to a mismatch between the rapid growth of the femoral epiphyses and the slower development of adequate blood supply to the area


Legg-Calve-Perthes – Lateral pillar classification

- This classification possesses the highest clinical relevance because it correlates best with long-term outcome. The crucial criterion in this classification is the height of the lateral third ("lateral pillar") of the femoral head
- Modified (Herring) Lateral pillar classification

 Group A: Height of the lateral pillar is 100% (no involvement)
 Group B: Height of the lateral pillar is > 50%
 Group C: Height of the lateral pillar is < 50%

Legg-Calve-Perthes – Lateral pillar classification

Legg-Calve-Perthes – Clinical features

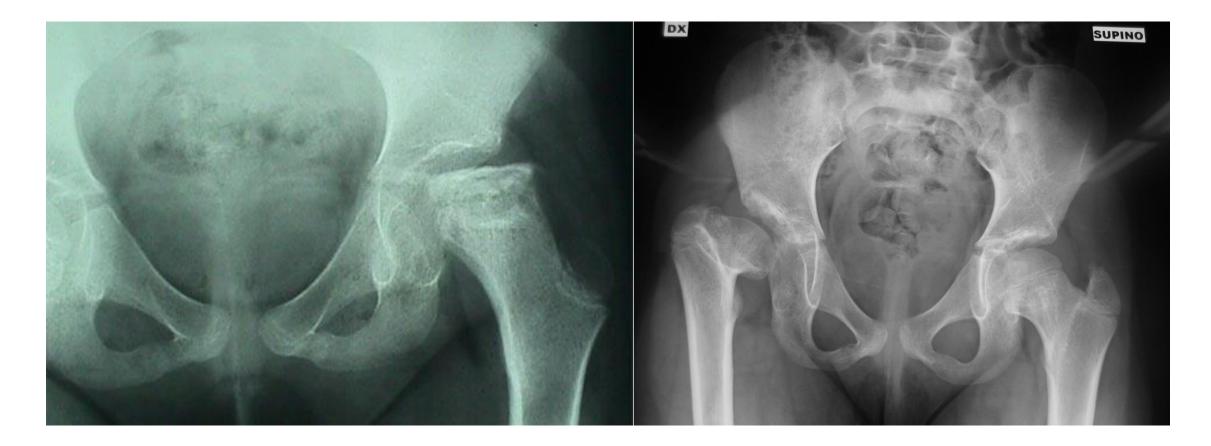
- Antalgic gait (on weight-bearing leg)
- Pain in the hip or the upper leg, sometimes projecting to the knee
 - \odot Insidious onset, pain may fluctuate depending on physical activity
 - \odot Often exacerbated by internal rotation
 - FABER test (Flexion, ABduction, and External Rotation) might be positive.
 - \odot Groin tenderness on palpation
- Restricted range of movement is usually present, especially regarding internal rotation and abduction, and can cause the child to limp.
- Hinge abduction: refers to the lateral femoral head bumping into the ventrolateral acetabulum when the leg is abducted, possibly involving pain, a palpable clunk, and restriction in the range of movement
- **\div** Contralateral involvement in \sim 10% of cases
- Complications: Early osteoarthritis of the hip joint

Legg-Calve-Perthes – Imaging

✤X-ray

O 2 views: AP view and frog leg position

 \odot Findings:


- Increased lucency of the femoral head
- Flattening and fragmentation of the femoral head
- Joint space widening
- MRI: indicated if initial imaging is unremarkable but clinical suspicion persists

 \circ "Head-at-risk" signs:

- Lateral calcification
- Lateral subluxation of the femoral head
- Lesions extending to the metaphysis
- Horizontal alignment of the epiphyseal plate
- Gage sign: triangle-shaped osteoporotic area of increased radiolucency of the lateral femoral head
- Crescent sign: subchondral lucency representing a fracture

Legg-Calve-Perthes – Imaging

Legg-Calve-Perthes – Treatment

Conservative treatment

Iimited weight bearing, physical therapy

Indicated in:

Young children (< 6 years of age)
Mostly undamaged femoral head
Lateral pillar A classification

Casting and bracing can also be used until femoral head deformity develops or range of motion worsens.

Surgery

femoral osteotomy

Indicated in:

 \odot Older children (\ge 6 years of age)

 Extensive damage to the femoral head (> 50%)

Lateral pillar B/C classification

Hip arthroplasty can be considered in adults that develop osteoarthritis

What is your diagnosis ?

- a. DDH
- b. SCFE
- c. Perthes disease
- d. Displaced femur head fracture
- e. Septic hip distruction

Poor prognostic factors ?

- \circ Older age
- o gage sign on X-ray

What is your diagnosis ?

- a. DDH
- b. SCFE
- c. Perthes disease
- d. Displaced femur head fracture
- e. Septic hip distruction

ىنوات (4)

Transient synovitis (toxic synovitis) of the hip

Definition: transient (1–2 weeks), self-limiting, nonspecific inflammation and hypertrophy of the synovial membrane of the hip joint

*****Epidemiology:

Common cause of acute hip pain in children
Peak incidence: 3–8 years of age

○ Sex: ♂ > ♀ (2:1)

*Etiology:

 \odot Exact cause is unknown

 \odot Associated with recent upper respiratory infection and recent gastroenteritis

Pathophysiology: nonspecific inflammation and hypertrophy of the synovial membrane

Transient synovitis (toxic synovitis) of the hip

Clinical features

- \odot Transient acute unilateral and transient hip or groin pain
- Children may limp or refuse to bear weight on the affected side
- Possibly limited range of motion (mostly to the extreme abduction and internal rotation position) and tenderness on palpation
- \odot Recent upper respiratory tract infection in approx. 70% of the patients

Diagnostics

- \odot Clinical diagnosis
- \odot Laboratory: mostly normal findings
- \odot Imaging: to rule out other conditions in presence of physical examination or laboratory findings
 - Normal x-ray findings (anteroposterior view of the pelvis and lateral views of both hips)
 - Effusion on ultrasound that typically improves within days

Transient synovitis (toxic synovitis) of the hip

Treatment: symptomatic (e.g., rest, NSAIDs)

* Prognosis

 \odot Typically resolves within 1 week

 \odot Recurrence in approx. 20% of the children

Developmental dysplasia of the hip

Definition: Hip instability, subluxation/dislocation of the femoral head, and/or acetabular dysplasia in a developing hip joint.

*Epidemiology

 \odot Incidence: most common congenital abnormality of skeletal development

- Hip instability: 1 in 100 births
- Dislocation: 1 in 1000 births
- o **Sex**: ♀ > ♂ (4–5:1)

Etiology: Unknown

Developmental dysplasia of the hip

*Risk factors:

- \circ Family history
- \odot Breech presentation
- Inadequate intrauterine space for the fetus (e.g., oligohydramnios, first born child, twins, large birth weight)
- \odot Diseases associated with ligamentous laxity
- \odot The left hip is more commonly affected
- \odot Secondary anatomic changes
 - Development of contractures around the hip
 - Problems associated with leg length discrepancy (e.g., abnormal gait, scoliosis, lordosis)

* Pathophysiology:

- Children with DDH have varying degrees of abnormal hip growth such as hip instability, hip subluxation, and/or hip dislocation which result in
 - Hypertrophy of pulvinar fat in the acetabulum, transverse acetabular ligament, and/or ligamentum teres
 - Acetabular dysplasia

Clinical features

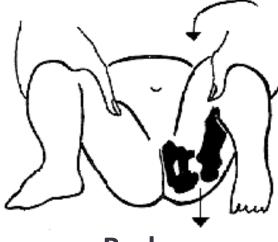
Age	Clinical features ^[3]
< 6 months	 Asymptomatic Barlow sign: a palpable clunk caused by <u>hip dislocation</u> when the <u>hip</u> is flexed and <u>adducted</u> with application of downward pressure Ortolani sign: a palpable clunk caused by <u>hip</u> reduction when the <u>hip</u> is flexed and <u>abducted</u> while applying upward pressure Possibly Galeazzi sign
6-18 months (=)	 Inability to <u>abduct</u> the <u>hip</u> = Barlow and <u>Ortolani sign</u> disappear Prominent Galeazzi sign: unequal <u>knee</u> height and apparent shorter <u>femur</u> when a child placing <u>supine</u> with hips and <u>knees</u> flexed Asymmetrical gluteal folds may be present.
> 18 months (==)	 Hip pain, and/or pain referred from the hip to the knee and/or anterior thigh Possibly a hip deformity (e.g., coxa vara) Waddling or Trendelenburg gait = Leg length discrepancy and toe walking to compensate for the difference in leg length Possibly lumbar lordosis

Diagnostics

*****Screening:

 Physical examination must be performed at every well-baby visit for up to 6 months (Barlow test, Ortolani test, Galeazzi sign, Asymmetric skin folds)

- Screening with imaging is recommended up to 6 months of age only if one or more of the following risk factors are present
 - Breech presentation at birth
 - Positive family history of DDH
 - Clinical features of DDH


Imaging:

• Hip ultrasound: imaging of choice in all infants younger than 4 months

- Alpha angle < 60°; Normally > 60°
- Beta angle > 55°; Normally < 55°
- Pelvic x-ray (in AP and frog leg lateral view): imaging of choice in infants older than 4 months

Physical examination

Barlow

- Femur gently adducted and flexed, posterior force applied
- Feel for palpable give or clunk as head leaves socket
- $\circ\,$ Indicates dislocatable hip

Ortolani

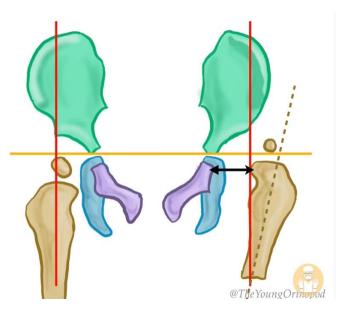
- Femur gently abducted, trochanter elevated
- Feel for palpable clunk as head falls into socket
- $\,\circ\,$ Indicates reducible hip

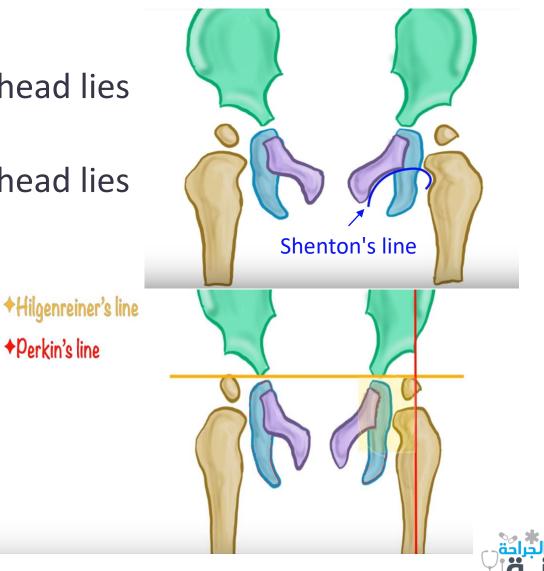
Galeazzi sign

 Femur appears short with hip flexed

Other signs

 Asymmetric abduction or motion of hip


Asymmetric skin folds


 Skin folds in groin or buttock, not thigh

Findings of hip dislocation on X-ray

- Interrupted Shenton's line
- The ossified nucleus of the femoral head lies at or above Hilgenreiner line
- The ossified nucleus of the femoral head lies at or lateral to Perkin line

Treatment

♦ < 6 months</p>

 Pavlik harness (most commonly used splinting device) that maintains the hips in 90– 100° of flexion and 50° of abduction

• Alternatives: rigid harnesses (e.g., von Rosen harness)

- A rigid harness that is used to treat infants with developmental dysplasia of the hip (DDH) below the age of 6 months.
- The harness keeps the hips abducted by 50° and flexed by 90–100° in order to achieve concentric reduction of the femoral head.

*6–18 months or failure of bracing: closed reduction followed by immobilization with a hip spica cast

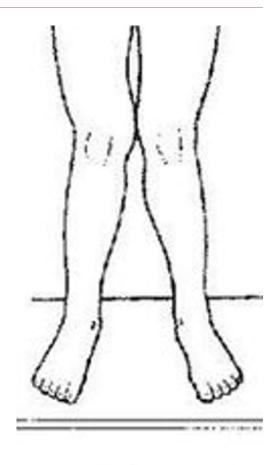
*> 18 months or failure of closed reduction: surgical therapy (open reduction possibly with a pelvic/femoral osteotomy) followed by immobilization with a hip spica cast

Older adolescents or adults: total hip arthroplasty

Complications

Complications of DDH

 Residual acetabular dysplasia, subluxation, and/or redislocation despite treatment


- \odot Early osteoarthritis in the hip joint
- Leg length discrepancy which may present with back pain, functional scoliosis, and/or knee pain

 \circ Genu valgum

Complications of treatment

 \odot Avascular necrosis (AVN) of the femoral epiphysis

- \odot Treatment-related transient femoral nerve palsy
- \circ Pavlik harness disease

Genu valgum

What is the disease that can be seen in this X-ray

- a. DDH
- b. SCFE
- c. Perthes disease
- d. Displaced femur head fracture
- e. Septic hip distruction

نوات (2)

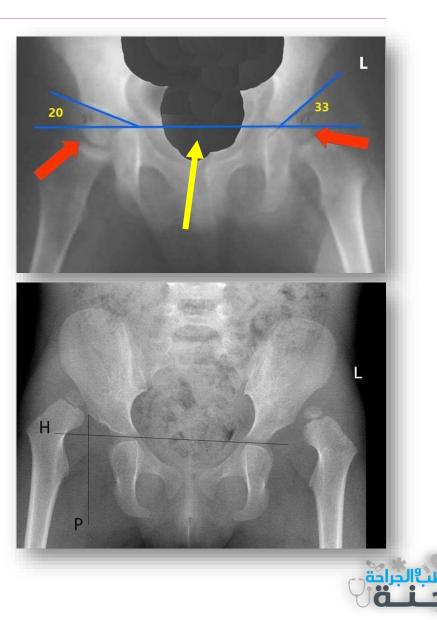
4 weeks baby with sign of DDH, Positive barlow test and galeazzi sign

What is your next step ?

- a. Hip ultrasound
- b. Pelvis X-RAY
- c. Observation
- d. Follow up after 6 week
- e. Pavlik Harness

5th months old baby come for DDH screen

What is your DDx ?

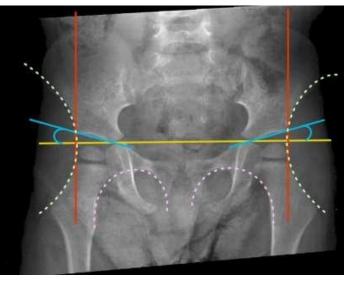

 \circ DDH

What is the name of line that is indicated by the yellow arrow ?

 \circ Hilgenreiner line (H-Line)

What is your management ? (MCQ)

- a. Pavlik harness
- b. Hip spica

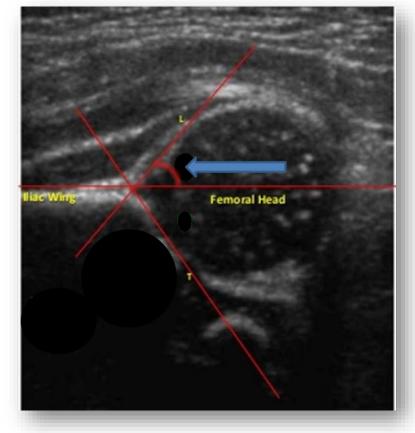


DDH – MCQs

- اسنوات (۱) The red line is (۱)
 - a. Shenton line
 - b. H line
 - c. Perkins line
 - d. Acetabular line
 - e. Roof index line

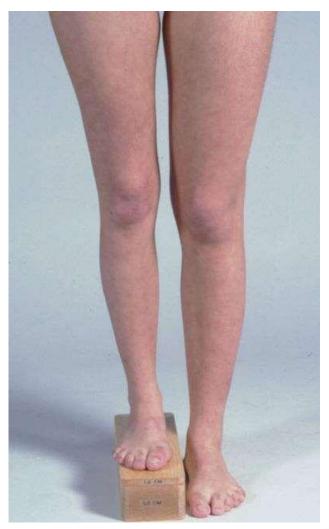
منوات (2) The name of the line is

- a. Shenton line
- b. H line
- c. Perkins line
- d. Acetabular line
- e. Roof index line



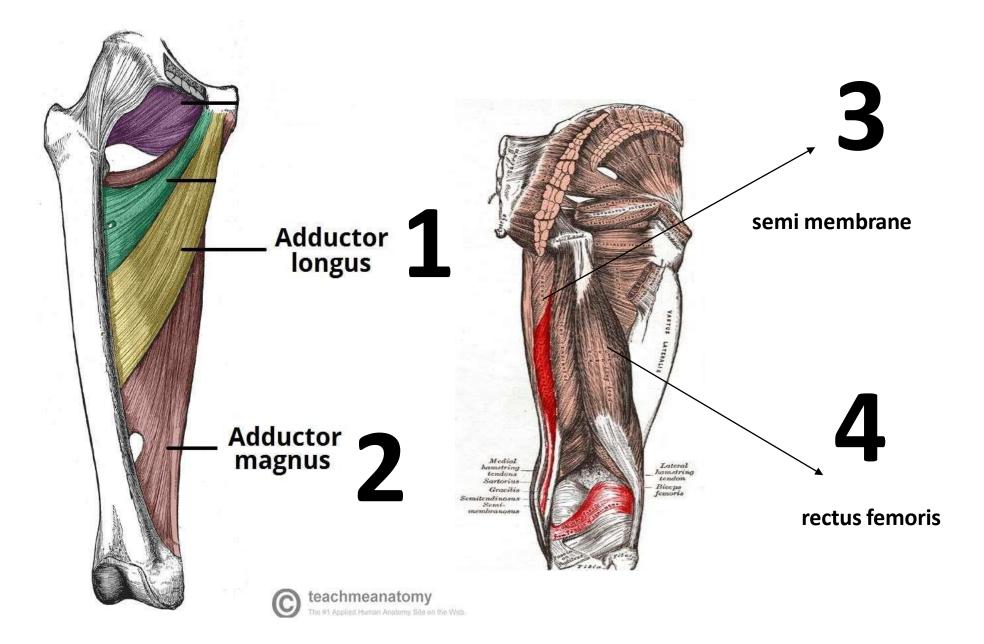
One of the following is true

- a. Alpha Angle is bigger than 60
- b. Alpha Angle is less than 55
- c. Beta angle is bigger than 60
- d. Beta angle is less than 55 (Archive anwser)

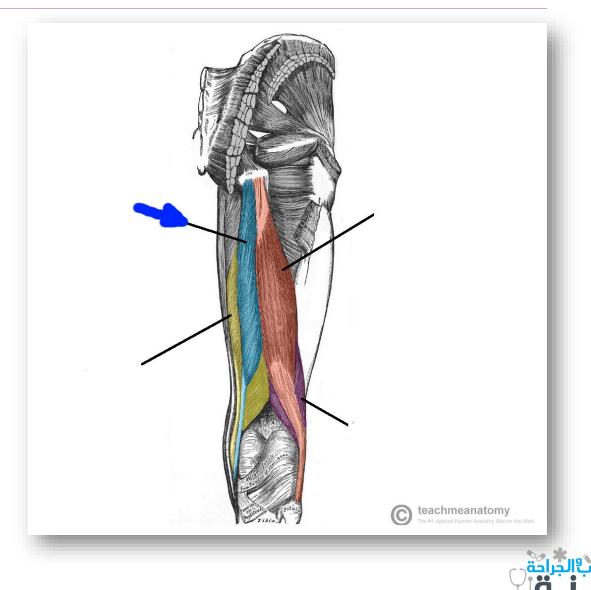

Lower limb discrepancy

What is your diagnosis ?

Lower limb discrepancy (shortening)


What are possible causes ?

DDH
SCFE
Neck of femur fracture



What is the pointed muscle ?

- a. Biceps femoris
- b. Semimembranosus
- c. Semitendinosus
- d. Gastrocnemius
- e. Vastus lateralis

Femoral shaft fracture

Epidemiology

 \odot Age: bimodal distribution, based on exposure to causative force

- High-energy trauma associated: common in younger population (< 25 years)
- Low-energy trauma associated: common in older population (> 65 years) \circ Sex: \circ > \circ

*Etiology

- High-impact trauma: motor vehicle accidents, pedestrian-versus-vehicle accidents, falls, gunshot wounds
- \odot Low-impact injuries associated with pathological fractures: fall from standing (height > 1 m)
- \odot Stress fractures (rare): seen in long distance runners

Winquist-Hansen classification

Type 0: no comminution, simple transverse or oblique

Type I

 \circ Small butterfly fragment

 \odot Minimal to no comminution

Type II: butterfly fragment with at least 50% of the circumference of the cortices of the two major fragments intact

Type III: butterfly fragment with 50-100% of the circumference of the two major fragments comminuted

Type IV

 \odot Segmental comminution

 \odot All cortical contact is lost

Femoral shaft fracture

Diagnostics

 \circ Plain x-ray

 \odot CT and MRI if a tumor, infection, or other pathological process is suspected

Management

- Stabilization, analgesia, and open fracture management
- \odot Splinting and traction
- \circ Surgery (definitive treatment)
 - Intramedullary rod via an interlocking nail (antegrade nailing): treatment of choice
 - External fixation with conversion to intramedullary nail within 2–3 weeks

Complications

Shock

- Fat embolism (closed fractures)
- Vascular injuries
- Thromboembolism
- Infection (open fractures)
- Delayed union & non-union
- Malunion
- Joint stiffness due to soft tissue adhesion .

A 64 yrs old osteoporotic women after falling down

What is your diagnosis ?

 \circ Proximal femur shaft fracture

What is your management ?

 \odot Open reduction internal fixation

نوات (1)

Femoral shaft fracture

What is your diagnosis ?

 \circ Midshaft femur fracture

What is your management ?

 \circ Surgery

Supracondylar fracture of the femur

Clinical findings

- $\,\circ\,$ The knee is swollen & deformed, movement is too painful to be attempted.
- \odot The tibial pulses should always be palpated.

∜X-ray

- The fracture is just above the femoral condyles & is transverse or comminuted, the distal fragment is usually tilted backwards.
- $\,\circ\,$ x-ray the entire femur to exclude proximal fracture or dislocated hip .

Treatment

- $\,\circ\,$ If slightly displaced: skeletal traction
- $\,\circ\,$ If fails open reduction with internal fixation

Complications

- \odot Joint stiffness
- \circ Nonunion
- \circ Osteoarthritis

What Muscle cause this fracture ?

- a. Gastrocnemius
- b. Hamstring
- c. Sartorius
- d. Quadriceps

SUPRACONDYLAR FRACTURES OF THE FEMUR

Supracondylar fractures of the femur are seen (a) in young adults, usually as a result of highenergy trauma, and (b) in elderly, osteoporotic individuals. Direct trauma is the usual cause. The fracture line is just above the condyles, but it may branch off distally between them. The pull of the gastrocnemius attachments may tilt the distal fragment backwards.

Patient come to clinic after 9M post-surgery suffering from pain

*****What is your diagnosis ?

 \odot Nonunion supracondylar fracture

Risk factors

Use of tobacco or nicotine in any form
Older age
Severe anemia
Diabetes

- \circ A low vitamin D level
- \circ Hypothyroidism
- \circ Poor nutrition
- $\circ \text{Infection}$

These are nonspecific factors that increase the risk of nonunion

Condylar fractures

Clinical findings

 One or both condyles of the femur maybe fractured, the knee is swollen & the doughy feel of a hemarthrosis.

∜X-ray

 One condyle may be fractured & shifted upward, a supracondylar fracture maybe present

Treatment

- \odot Accurate reduction is important
- \odot Open reduction & internal fixation are often employed

Complications

- \odot Stiffness of the knee
- $\circ \, \textbf{Osteoarthritis}$

Patellar fractures

Classification: 3 types

- An undisplaced crack across the patella, which is probably due to direct blow
- A comminuted or stellate fracture, due to a fall or a direct on the front of the knee
- A transverse fracture with a gap between the fragments, this is an indication traction injury due to forced, passive flexion of the knee while the quadriceps muscle is contracted

Clinical features

 The knee is painful & swollen, sometimes the gap can be felt (loss of extension mechanism)

Most important factor to detect the mechanism of fracture

Intact extensor mechanism

نوات (2)

Patellofemoral Dislocation – Risk factors

General factors

- o ligamentous laxity (Ehlers-Danlos syndrome)
- \odot Previous patellar instability event
- "miserable malalignment syndrome" (a term named for the 3 anatomic characteristics that lead to an increased Q angle)
 - femoral anteversion
 - genu valgum
 - external tibial torsion / pronated feet

Anatomical factors

- \odot patella alta causes patella to not articulate with sulcus, losing its constraint effects
- \circ trochlear dysplasia
- \circ lateral femoral condyle hypoplasia

Patellofemoral Dislocation

Mechanism of injury

 \odot Noncontact twisting injury with the knee extended and foot externally rotated

Patient will usually reflexively contract quadriceps thereby reducing the patella

 \odot Direct blow: less common

• Ex. Knee to knee collision in basketball, or football helmet to side of knee

*Symptoms

Complaints of instability, anterior knee pain

Physical exam

 \odot Acute dislocation usually associated with a large hemarthrosis

 \odot Medial sided tenderness (over MPFL)

 Patellar apprehension (passive lateral translation results in guarding and a sense of apprehension)

Patellofemoral Dislocation

Imaging: X- ray

Treatment

- Nonoperative: (NSAIDS, activity modification, and physical therapy)
- \circ Operative
 - MPFL repair
 - MPFL reconstruction with autograft vs allograft
 - Fulkerson-type osteotomy (anterior and medial tibial tubercle transfer)
 - lateral release
 - trochleoplasty

404

Not Found

The resource requested could not be found on this server!

Patient with recurrent patellar dislocation

How do you test it

- a. Anterior drawer test
- b. Cross over test
- c. Patellar apprehension test
- d. Apply's test
- e. Lachman test

Patellofemoral Dislocation

What test can be used to diagnose this injury ?

- a. Anterior drawer test
- b. Cross over test
- c. Patellar apprehension test
- d. Apply's test
- e. Lachman test

All the following are risk factors for this condition EXCEPT:

- a. Genu varus (genu valgus is the risk factor)
- b. Femoral anteversion
- c. External tibial torsion / pronated feet
- d. Trochlear dysplasia
- e. Lateral femoral condyle hypoplasia

All the following are true except

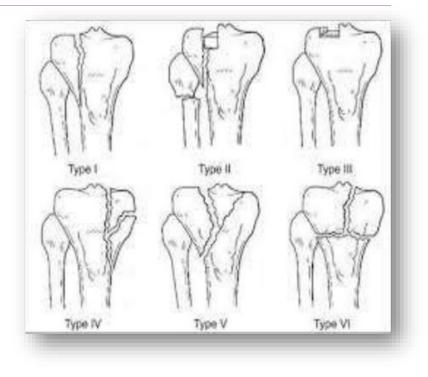
- a. Genu Valgus
- b. Genu Varus
- c. Increase risk of patellofemoral Dislocation
- d. Commonly seen in rickets

Tibial plateau fractures

*Etiology

 \circ RTA

 \odot Falls from a height in which the knee is forced into valgus or varus


Clinical features

- o Usually affects the lateral condyle of the tibia, sometimes medial or bilateral
- The patient is nearly always an adult
- \odot The joint is swollen & has doughy feeling of a hemarthrosis
- \odot Tenderness over the fracture

Classification

- Type 1: Simple of the lateral condyle
- Type 2: Split of the lateral condyle with more central depression
- Type 3: Depression of the lateral condyle with intact rim
- Type 4: Fracture of medial condyle
- Type 5: Both condyles with central portion still connected
- Type 6: Condylar + supracondylar fractures

Tibial plateau fractures

∜X-ray

- Multiple views are needed.
- \circ Tomography
- **Treatment**: Depends on the type.

*Complications

- Compartment syndrome
 Valgus or varus deformity
 Joint stiffness
- \circ Osteoarthritis

History of falling down from 2nd floor

Diagnosis:
 Tibial plateau fracture

Mechanism of fracture
 Valgus falling down

If lateral condyle fractured: Valgus falling down
If medial condyle fractured: Varus falling down
If both fractured: Straight legs

Osgood Schlatter's Disease

(Tibial Tubercle Apophysitis)

Definition: Osteochondrosis or traction apophysitis of tibial tubercle

Epidemiology

 \odot Young adolescence complaing of ant. Knee pain mainly after exercise

 \circ Male > female

 \odot Male 12-15 y

 \circ Female 8-12

Physical exam

- \odot Enlarged tibial tubercle
- \odot Tenderness over tibial tubercle
- Provocative test: pain on resisted knee extension

∜X-ray

Osgood Schlatter's Disease

Treatment

 \circ Nonoperative

- NSAIDS, rest, ice, activity modification
- Cast immobilization x 6 weeks
- $\circ \text{Operative}$
 - Ossicle excision
 - Refractory cases (10% of patients)
 - In skeletally mature patients with persistent symptoms

The most sensitive test for this patient is

- a. Lachman test
- b. Posterior drawer test
- c. Joint Line tenderness
- d. MacMurray's test
- e. Provocative test
- a. Lachman test
- b. Posterior drawer test
- c. Joint Line tenderness
- d. MacMurray's test
- e. Tibial tuberosity tenderness

20 years old male patient complaining of knee pain

What disease could have caused the appearance shown here ?

 $\circ \, {\rm Osgood} \, {\rm Schlatter} \, {\rm disease}$

Where is the abnormality ?

 \odot Secondry tibial tuberosity ossification center

Most common age for Osgood-schlatter is

- a. 6
- b. 10
- c. 14

Ligaments & Menisci Injuries

Anterior cruciate Ligament

***Function**: prevents anterior translation of the tibia relative to the femur

Anatomy: intrasynovial, intracapsular

 \odot Origin: lateral femoral condyle

 \odot Insertion: anterior and between the intercondylar eminences of the tibia

 \circ Structure

- anteromedial (tight in flexion and loose in extension)
- posterolateral (tight in extension, loose in flexion)

\Rightarrow Blood supply: direct artery \rightarrow when injured immediate hemarthrosis

Innervation: for proprioception

Mechanism of injury: Non-contact pivoting injury (most common), Blow to the lateral aspect of the knee

Symptoms: Pian, Swelling, Felt a pop, **Giving way**

Anterior cruciate Ligament

Examination: Lachman test, Anterior drawer test, Pivot shift test Imaging

 \odot X-rays: can be positive sometimes (Avulsion fracture) \odot MRI: Gold standard

Treatment

Non-Operative: Physical therapy & lifestyle modifications; doesn't decrease the risk of meniscal tear

***Operative**: Indications:

- must have full motion of knee restored following injury (unless meniscal tear causing mechanical block)
- \odot lack of pre-operative motion risk factor for post-operative arthrofibrosis
- younger, more active patients (reduces the incidence of meniscal or chondral injury)
- ochildren (activity limitation is not realistic)
- older active patients (age >40 is not a contraindication if high demand athlete)
- o partial/single bundle tears with clinical and functional instability
- \circ prior ACL reconstruction failure

Posterior Cruciate Ligament

***Function**: Prevents posterior translation of the tibia relative to the femur

Anatomy: extrasynovial but intracapsular

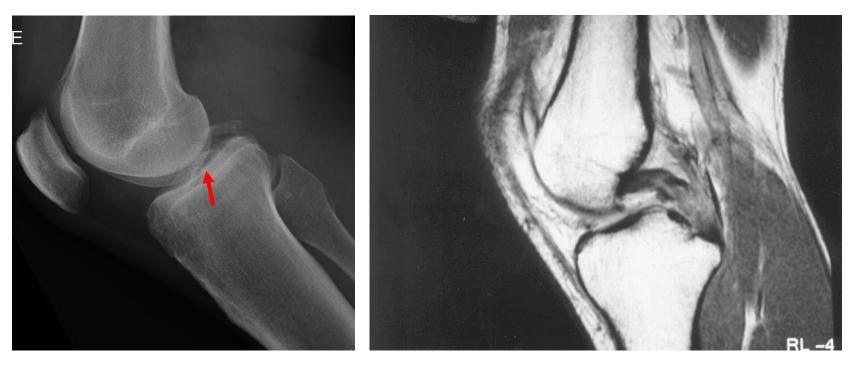
- Origin: medial femoral condyle
- \circ Insertion: tibial sulcus
- \odot Structure: two bundles
 - anterolateral
 - posteromedial

\Rightarrow Blood supply: direct artery \rightarrow when injured immediate hemarthrosis

Innervation: for proprioception

Mechanism of injury: Direct blow to proximal tibia with a flexed knee (Dashboard injury), Noncontact hyperflexion with a plantar-flexed foot, Hyperextension injury

Symptoms: posterior knee pain, instability (often subtle or asymptomatic in isolated PCL injuries)



Posterior Cruciate Ligament

***Examination**: Posterior drawer test

✤Imaging

 \odot X-rays: can be positive sometimes (Avulsion fracture) \odot MRI: Gold standard

Treatment

Nonoperative: protected weight bearing & rehab

Indications: isolated Grade I (partial) and II (complete isolated) injuries
 Modalities: quadriceps rehabilitation with a focus on knee extensor strengthening

Operative: PCL repair of bony avulsion fractures or reconstruction O Indications

- Combined ligamentous injuries
- Isolated grade II or III injuries with bony avulsion
- Isolated chronic PCL injuries with a functionally unstable knee

Meniscal tear

Mechanism of injury

 \circ An acute twisting injury from impact during a sport (usually, the foot stays fixed on the ground and the rest of body rotates)

 \odot Getting up from a squatting or crouching position

 \odot Loading the knee from a fixed position

* Symptoms

- \odot Pain localizing to medial or lateral side
- Mechanical symptoms (locking and clicking), especially with squatting
- \odot Delayed or intermittent swelling

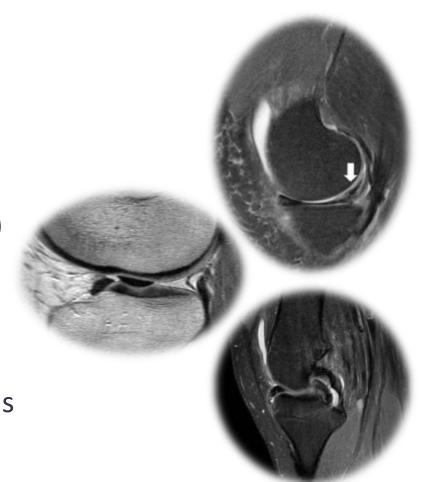
*****Examination

- o Joint Line tenderness is the most sensitive physical examination finding.
- \odot Mcmurray's test
- \odot Apply grinding test
- \odot Thessaly test

Meniscal tear

Classification

 $\circ \text{Location}$


- red zone (outer third, vascularized)
- red-white zone (middle third)
- white zone (inner third, avascular)
- Position (anterior, middle, posterior third, root)

 $\circ \, \text{Size}$

 \circ Pattern

*Imaging

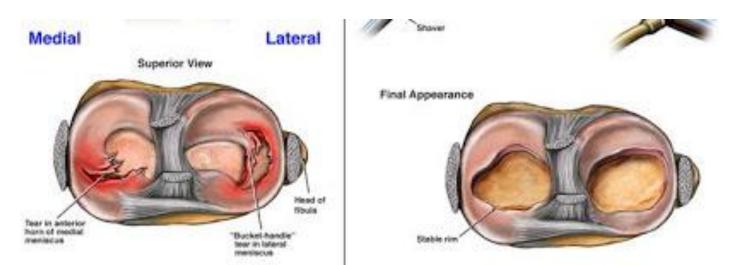
 MRI (Most sensitive diagnostic test, but also has a high false positive rate)

Meniscal tear – Treatment

Nonoperative: Rest, NSAIDs, Rehabilitation

 \odot Indicated as first line treatment for degenerative tears

 \circ Outcomes


- Improvement in knee function following physical therapy
- "Noninferior" when compared to arthroscopic partial meniscectomy

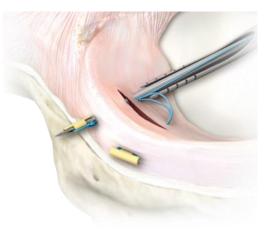
Partial meniscectomy

 $\circ \text{ Indications}$

- Tears not amenable to repair (complex, degenerative, radial tear patterns)
- Repair failure >2 times

Outcomes: >80% satisfactory function at minimum follow-up

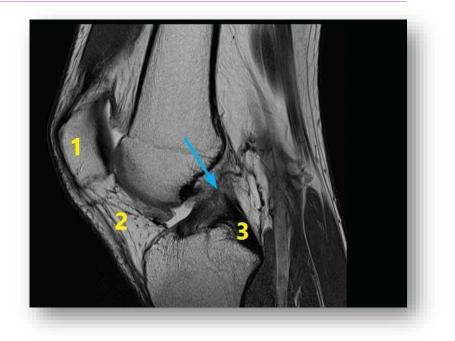
Meniscal tear – Treatment


*Meniscal Repair

$\circ \text{Indications}$

- Peripheral in the red-red zone (vascularized region)
- Vertical and longitudinal tear
- rather than radial, horizontal or degenerative tear
- bucket handle meniscus tear.
- Root tear
- Acute repair combined with ACL reconstruction

Outcomes: 70-95% successful



What is the name of theses structure ?

- 1. patella
- 2. patellar tendon
- 3. posterior cruciate ligment

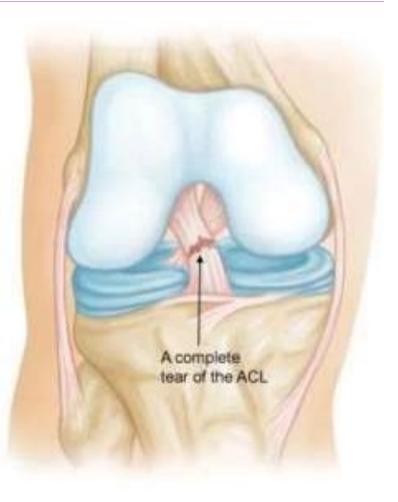
نوات (1)

سنوات (1)

Test used for diagnosis of this injury

- a. apprehension test
- b. Lachman test
- c. MacMurray test
- d. Provocative test
- e. Posterior drawer test

Patient with meniscal tear, the most sensitive test is


- a. apprehension test
- b. Lachman test
- c. MacMurray test
- d. Provocative test
- e. Posterior drawer test

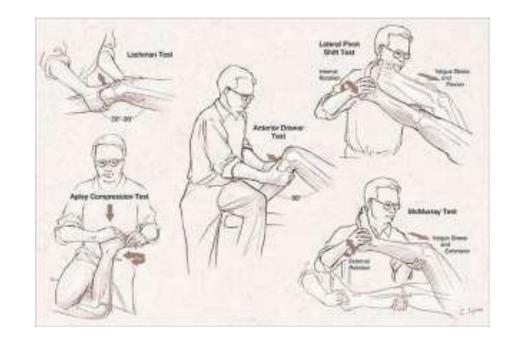
All are examination of ACL injury except

- a. Lachman
- b. MacMurray
- c. Pivot
- d. KT -1000
- e. Anterior drawer test

Patient came with this injuries after 6 month

What is the main complain ?

- a. Pain (very severe)
- b. Swelling
- c. Felt a POP
- d. Giving way



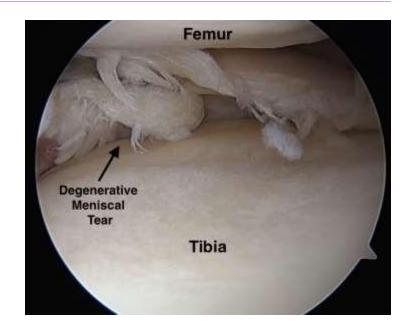
نوات (1)

All the following tests done in the supine position except

- a. Apley's test
- b. Lachman test
- c. Anterior drawer test
- d. MacMurray test

سنوات (2)

سنوات (2)


MacMurray test for the medial meniscus

- a. Full flexion, external rotation, valgus stress and then extension
- b. Extension, internal rotation, valgus stress then extension
- c. Full flexion , external rotation, varus stress the extension

One of these is the most accurate physical examination test to this case (meniscal tear)

- a. Apley's distraction test
- b. Joint Line tenderness
- c. Lachman test

This test is

 \odot Valgus stress test

The ligament examined is

 \circ Medial collateral ligament

This test is

 \odot Varus stress test

The ligament examined is

 \circ Lateral collateral ligament

Patient suspected to have ACL tear

*****What is the test preformed in the picture ?

 According to the picture, Lachman test procedure(flexion 30 degrees and pulling the tibia anteriorly)

What is not true about this tear ?

- a. MacMurray test positive
- b.
- С.
- d.
- e.

- *What is the name of this sign
 - ○Sag sign
- What is the injured ligament
 OPCL
- Test for the injured structure in the picture is

 \odot Posterior drawer test

نوات (1)

The sign shown in the red circle indicates what ?

ACL tear (Segond fracture, pathognomic)

*****Most common sensitive test to diagnose:

 \circ Lachman

What pathology can you see in this image ?

Meniscal tear (double PCL sign)

What is the examined ligament ? OACL

What is the attachment of the structure examined ?

• Medial border of lateral femoral condyle

نوات (2)

- Patient came to ER With knee pain 1 day duration and the TM was 39. Aspiration from joint is shown in the second photo
- Write 2 possible causes
 - 1. ACL tear
 - 2. Hemarthrosis
 - 3. Hemophilia

نوات (1)

All the following can cause this except

- a. Clergyman bursa
- b. Backers' cyst

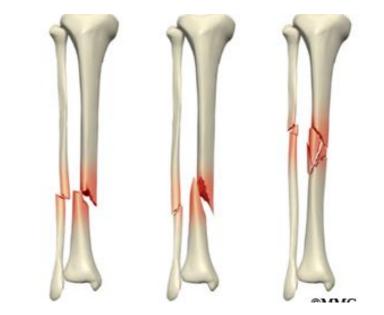
Will Graham: A 24-Year-Old Youth Pastor With Posterior Left Knee Swelling and Pain

الصورة من الانترنت مش نفس صورة الامتحان

Tibial fractures

Epidemiology: the most common type of long bone fractures

Etiology: usually caused by direct trauma


Classification

 \odot Tibial plateau fracture (discussed earlier) \odot Isolated tibia fracture

- Open or closed
- Displaced or nondisplaced
- Proximal or shaft
- \odot Isolated fibula fracture
- \odot Combined tibia and fibula fracture

Clinical features

 High risk of open fracture (and consequently infection) given minimal soft tissue surrounding the tibia and fibula

Diagnostics

Clinical examination: peripheral perfusion, motor function, and sensation

X-rays: knee and ankle (anteroposterior and lateral views)

 Even when no obvious fracture is detected, tibial plateau fractures may cause lipohemarthrosis. This is visible as a fat-fluid level on x-ray.

- MRI: can be useful to assess injuries to the meniscus and the ligaments associated with tibial plateau fractures.
- Joint aspiration: can be performed
 - \odot Bloody effusion (hemarthrosis) with fatty spots indicates an osteochondral fracture.

Management

Conservative treatment

- \odot Isolated fibula fractures: splinting and partial weight bearing
- Nondisplaced proximal tibial fractures: hinged knee brace and no weight bearing for 6 weeks
- Nondisplaced tibial shaft fractures: long leg cast (if the long leg cast fails to ensure proper healing, then surgical treatment is indicated)

Surgical treatment

- \odot Indication: open or displaced tibial shaft fractures
- \odot Open fractures require urgent irrigation and debridement
- \circ Open reduction and internal fixation with plate, screw, or intramedullary nail
- External fixation may be used, especially for complex fractures.

Complications

- High risk of compartment syndrome in any of the compartments, given that the tibia is surrounded by the anterior, lateral, and deep posterior compartments of the lower leg
- Fat embolism
- Peroneal nerve injury (foot drop)
- Deep vein thrombosis
- Nonunion
- Post-traumatic arthritis

Isolated fibula fracture

Which nerve is affected in this injury ?

○Common peroneal nerve

Nerve injury associated with this fracture will result in the loss of what ?

○ Loss of ankle dorsiflexion

Common peroneal nerve

After knee surgery patient came with this condition, what is your diagnosis ?

 \odot Drop foot

Name of injured nerve

 \odot Common peroneal nerve

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

Toddler fracture

- Definition: a nondisplaced isolated fracture of the distal tibial shaft, usually following acute trauma (e.g., falling, tripping), causing rotation of the body around a fixed foot (oblique or spiral fracture)
- Epidemiology: commonly seen in children between nine months and three years of age
- Mechanism of injury: trauma (e.g., low energy fall from a chair or table, tripping while running)

Clinical features

- \circ Irritability
- Abnormal gait (limping or inability to bear weight)
 Localized tenderness over the distal tibial shaft

Toddler fracture

Diagnostics

 \odot Often goes undetected due to subtle clinical and radiographic findings

 \circ Imaging

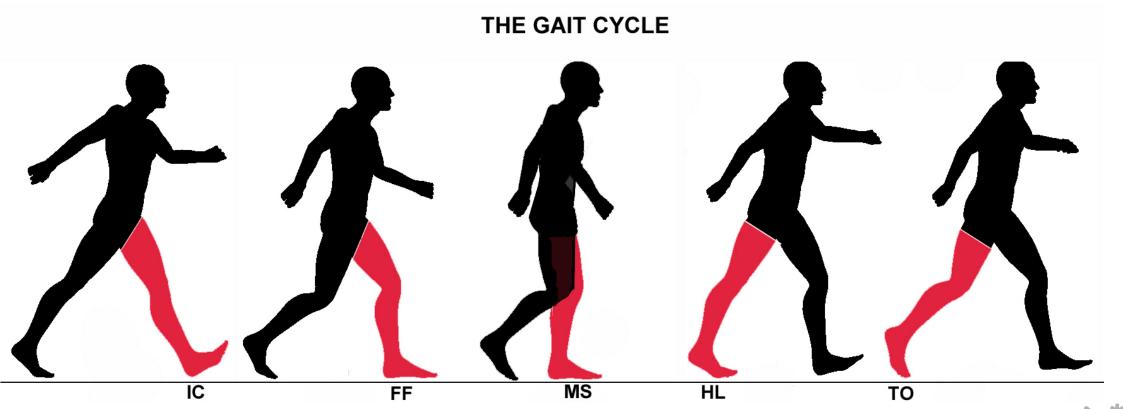
- AP, lateral, and oblique x-ray
- MRI and/or CT: indicated in cases of prolonged symptoms and suspicion of infection (e.g., osteomyelitis)

Management

Above knee cast 4-6 weeks.
Weight bearing as tolerated.
Heals completely in 6-8 weeks.

The management for this fracture

- a. Cast above knee
- b. Cast bellow knee
- c. Closed reduction and wires
- d. Nail fixation
- e. Plate fixation



لوات (4)

Gait cycle consist of 2 phases what are they ?

- 1. Stance phase
- 2. Swing phase

سنوات (1)

Ankle fractures

Etiology: Supination or pronation trauma ("twisted ankle")

Classification

- \odot Isolated medial or lateral malleolar fracture; Usually stable
- \circ Posterior malleolus fracture (refers to the posterior tibia); Usually unstable
- \odot Bimalleolar fracture (both medial and lateral malleolus); Mostly unstable
- Trimalleolar fracture (medial, lateral and posterior malleolus); Always unstable

\circ Special forms

- Avulsion of a bony fragment from the posterior tibial margin (Volkmann triangle)
- **Pilon fracture**: fracture of the distal tibia that involves the tibial part of the talocrural joint and is frequently associated with fibular fractures

What is your diagnosis ?

- a. Pilon fracture
- b. Tuft fracture
- c. Tibial plateau fracture
- d. Avulsion fracture
- e. Posterior malleolus fracture

Ankle fractures

Clinical features

- \odot Local pain, swelling and hematoma
- Tenderness, especially in the area of the malleoli, the syndesmosis, and the posterior aspect of the ankle joint
- \odot Restricted range of movement

Diagnostics

o 3-view plain x-ray: anteroposterior (AP), lateral and oblique view

- Evaluate articular surfaces
- Compare joint spaces between talus and medial malleolus, talus and lateral malleolus, and talus and tibial plafond
- Check for breaks in the ring of the ankle joint and for bony fractures

Ankle fractures

* Management

Initial management: rest, ice, compression, and elevation

\odot Conservative treatment

- Indications: stable fractures (isolated/nondisplaced malleolar fractures)
- Short leg cast for 4–6 weeks
- Surgical treatment: to ensure normal alignment of bone and cartilage to prevent ankle arthritis and to regain functionality
 - Indications: unstable/displaced fractures, open ankle fractures, and cases of neurovascular damage
 - Technique: reposition and internal or external fixation with metal plates and/or screws

*Complications

 \odot Damage to the peroneal nerve or saphenous nerve

History of twisting injury

What is your diagnosis ?

 \circ Ankle sprain

*****What is the most common injured ligament ?

- a. Anterior tibiofibular ligament
- b. Posterior talofibular ligament
- c. Anterior talofibular ligament
- d. Calcaneonavicular ligament
- e. Tibionavicular ligament

Second most common

○ Calcaneofibular

Ankle fractures – Pediatrics

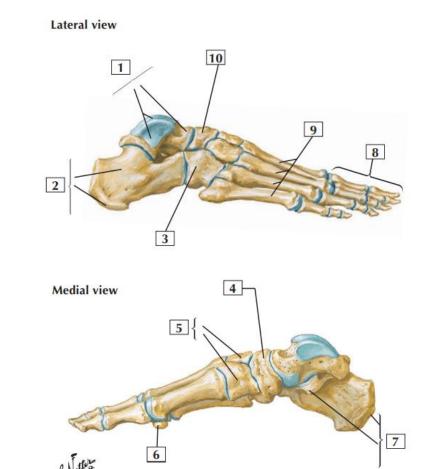
Triplane Fractures

- Triplane Fractures are traumatic ankle fractures seen in children 10-17 years of age characterized by a complex Salter-Harris IV fracture pattern in multiple planes
- Diagnosis can be made with plain radiographs of the ankle. CT scan may be required to further characterize the fracture pattern and for surgical planning
- Treatment is closed reduction and casting or surgical fixation depending on the patient age and degree of fracture displacement

Ankle fractures – Pediatrics

Tillaux fracture

- Tillaux Fractures are traumatic ankle injuries in the pediatric population characterized by a Salter-Harris III fracture of the anterolateral distal tibia epiphysis.
- Diagnosis can be made with plain radiographs of the ankle. CT scan may be required to further characterize the fracture pattern and for surgical planning.
- Treatment is closed reduction and casting if < 2mm displacement or operative management if > 2mm displacement.



Bones of Foot

- 1. Talus (Head; Trochlea)
- 2. Calcaneus (Body; Tuberosity)
- 3. Cuboid
- 4. Navicular
- 5. Cuneiform bones
- 6. Sesamoid bone
- 7. Calcaneus (Tuberosity; Sustentaculum tali)
- 8. Phalanges
- 9. Metatarsal bones
- 10. Navicular

Bones of Foot

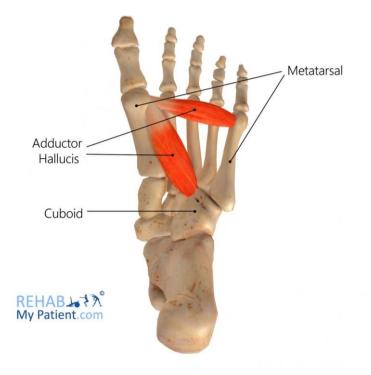
What is the name of this bone

- a. Cuneiform
- b. Capitation
- c. Navicular
- d. Cuboid
- e. Hamate

Not the same picture

What is the name of these bones

- 1. Cuboid
- 2. Navicular bone



نوات (1)

Anatomy question

سنوات (1)

Talus fractures

Epidemiology: Rare, due to considerable power needed

*Etiology

High energy trauma: fall from a height, motor vehicle collision
 Axial loading: sports injuries (esp. snowboarder's ankle)

✤Imaging

 \odot Plain x-ray series

- AP, lateral, and mortise views of the ankle
- AP, lateral, and oblique views of the foot
- Canale view: used when there is a high suspicion of talar neck fractures or if CT imaging is unavailable
- \odot CT scan (confirmatory test): used to assess articular involvement and characterize fracture

Talus Fracture, Types

Type I Non-displaced 15% AVN

Type II

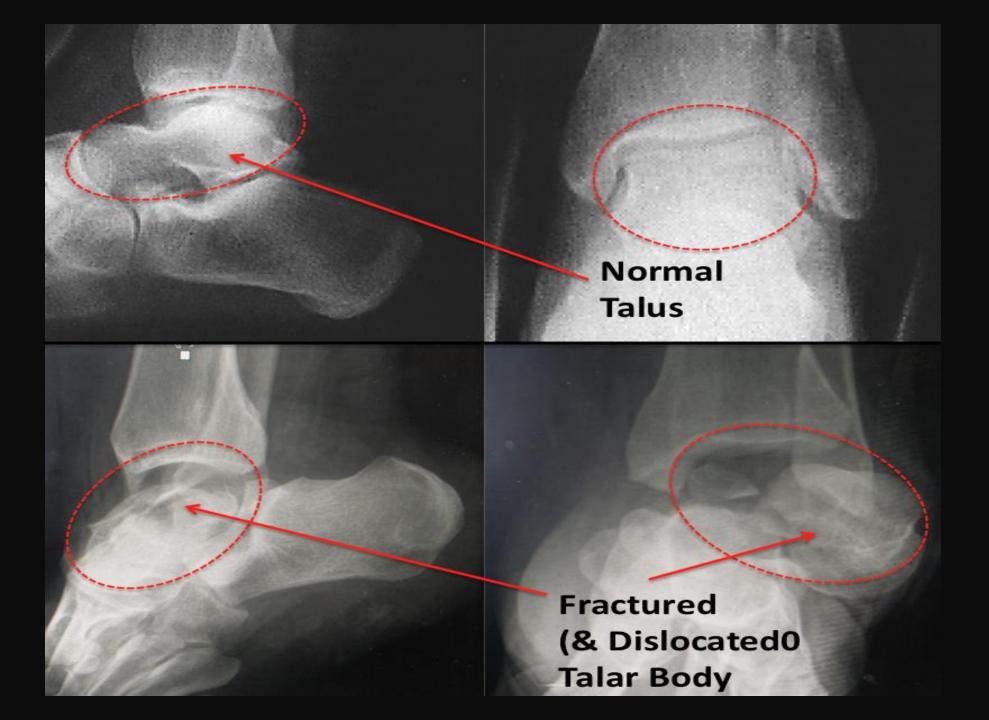
Fracture with subtalar dislocation or subluxation

50% AVN


Type III

Fracture with subtalar and Subtalar and Subtalar and Tibiotalar dislocation 90% AVN Subluxation Subluxation

90 - 100% AVN



Management

Conservative

 Technique: non-weight-bearing, short leg cast usually for 6–8 weeks (talar neck fractures up to 12 weeks)

 \odot Indications: stable or nondisplaced fractures

 \circ Other

- Pain management (NSAIDs, opioids, local anesthetics)
- Physical therapy

*Surgical

 \odot Procedure: open reduction and internal fixation \odot Indications

○ Indications

- Open fractures
- Displaced fractures (> 2 mm)
- Comminuted fractures
- Neurovascular injury
- Associated dislocation

*Complications

• Avascular necrosis.

 \odot Joint stiffness

 \circ Osteoarthritis

Talus fractures

- What type of fracture is shown in this image?
 - \circ Talus neck fracture

Calcaneum fractures

Etiology: Falling (often from a ladder) onto one or both heelsClinical features

o Spine, pelvis & hip must be checked

 \odot The foot is painful, swollen & bruised, the heel may look broad & squat

 \odot Ankle movement is possible, but the subtalar joint can not be moved

☆X-ray

- Crack features can be missed unless special views are obtained.
- \odot Bohler's angle: flattening of the tuber-joint angle.
- \odot Intra-articular features may need CT scan.

 \odot You should x-ray the pelvis & spine as well

Calcaneum fractures

Treatment

 Admission so that the foot & leg can be elevated, treated with ice bags until swelling subsides.

 \odot Undisplaced treated with close reduction.

 \circ If displaced, needs internal fixation.

Complication

 \odot Broadening of the heel

 \odot Talocal caneal stiffness & osteoarthritis

What is the most common delayed function loss with this fracture ?

- a. Planter flexion
- b. Supination and adduction
- c. Dorsiflexion
- d. Inversion and Eversion
- e. Abduction

Not the same picture, but it was calcaneus bone fracture

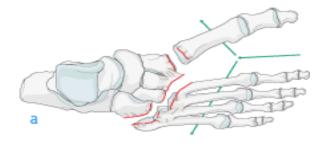
(2)

ہ ات

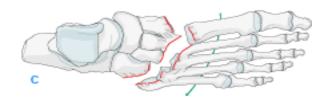
Mid-tarsal & tars metatarsal fractures

Etiology

 \odot Falls in which the foot is twisted


Clinical features

 Crushing injuries are worse, because of accompanied severe soft tissue damage, bleeding into facial compartments may cause ischemia of the foot.


- \odot Foot is swollen & bruised.
- \odot Pain on moving the forefoot.
- \odot Examine for signs of ischemia

∜X-ray

 Multiple views are required to show the extent of the injury



Treatment

Ligamentous strains: bandages.

Undisplaced fractures: elevate foot for 4 days, then below knee cast.

Fracture dislocation: reduce fracture under GA & maintain fixation.

Lisfranc fracture

*****What is the management of this deformity ?

○ ORIF (Open reduction internal fixation)

5th Metatarsal avulsion fracture

- Which of the following muscles is responsible for this avulsion fracture
 - a. Posterior tibialis muscle
 - b. Peroneus brevis
 - c. Peroneus longus
 - d. Planter fascia
 - e. Anterior tibialis muscle

Fractured toes

Etiology

 Heavy object falling on the toes may fracture phalanges.

Clinical features

- If the skin is broken it must be covered with a sterile dressing.
- The fracture is disregarded & the patient encouraged to walk in suitably mutilated boot.

Common foot disorders

Achilles tendinitis

Definition: overuse injury of the Achilles tendon

- Etiology: athletes/individuals who have recently increased their exercise intensity
- Clinical features: pain and tenderness 2–6 cm above the insertion of the Achilles tendon, may come on gradually, or rapidly

* Management

- \circ Rest
- \odot Stretching and later strengthening of the calf muscles
- \odot Switching to a different, less strenuous sport
- \circ lcing
- \odot Physical therapy, ECSW
- \odot Anti-inflammatory medication.
- \odot Wearing a shoe with a built-up heel to take tension off Achilles tendon

Achilles tendon rupture

Epidemiology

 Most common in people that are active in sports or recreational activity

 \odot More common in males, 30-50 years old

Clinical features

- A ripping or popping sensation is felt, and often heard, at the back of the heel.
- \odot The typical site for rupture is at the vascular watershed about 4 cm above the tendon insertion.
- \odot Plantarflexion of the foot is usually inhibited and weak
- There is often a palpable gap at the site of rupture; bruising comes out a day or two later

Patient with a trauma history

(4) منوات (4) What is your diagnosis ?

 \odot Ruptured Achilles tendon

(1) سنوات (۱) Muscles of the affected structure are

 \odot Superficial posterior muscles

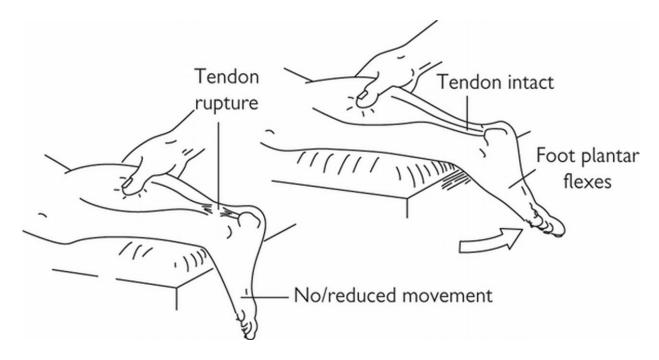
(2) سنوات (2) Which of the following is not associated with Achilles tendon tear ?

- a. Positive squeeze test
- b. Palpable gap at the site of rupture
- c. Compromised dorsiflexion of the foot

(1) سنوات (1) 🛠 سنوات (1)

 \odot Achilles tendon rupture repair

Achilles tendon rupture


* Diagnosis

The calf squeeze test (Thompson's or Simmond's test)

*Management

 \odot Conservative; cast with the foot in plantar flexion

 \odot Surgical; direct repair of achillis tendon

Retrocalcaneal bursitis

* Definition

 Retrocalcaneal bursitis is inflammation of the bursa between the anterior aspect of the Achilles and posterior aspect of the calcaneus.

Clinical features

- \odot Haglund deformity an enlargement of the postero superior tuberosity of the calcaneus.
- \odot Pain localized to anterior and 2 to 3 cm proximal to the Achilles tendon insertion
- \odot Fullness and tenderness medial and lateral to tendon
- \odot Pain with dorsiflexion
- \odot Bony prominence at Achilles insertion

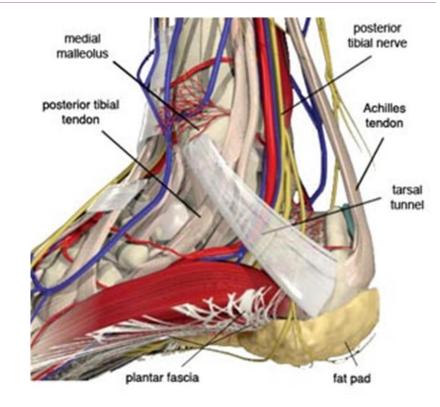
Management

- Nonoperative: Activity modification, shoe wear modification, physical therapy, NSAIDs.
- **Operative**: Retrocalcaneal bursa excision and resection of Haglund deformity.

Tarsal Tunnel Syndrome

* Pathophysiology

 Compressive neuropathy caused by compression of the tibial nerve.


Clinical features

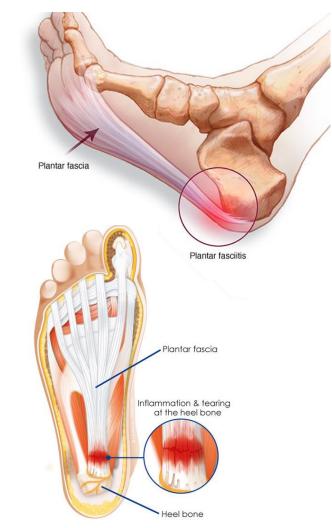
 Pain with prolonged standing or walking; often vague and misleading medial foot pain
 Sharp, burning pain in the foot.

 \odot Numbness and intermittent paresthesias

Management

 Nonoperative: Lifestyle modifications, bracing, and NSAID medications
 Operative; surgical release of tarsal tunnel.

Plantar fasciitis


***Definition**: inflammation of the plantar aponeurosis

*Etiology

- o Unknown
- \odot Risk factors include:
 - Foot deformities: pes planus, pes cavus
 - Training errors: excessive training, sudden changes in training intensity, inappropriate equipment
 - Occupations associated with long periods of standing, jumping, and weight-bearing
 - Obesity

Pathophysiology

- A degenerative condition that may or may not be associated with inflammatory changes in the tissues.
- \odot There may be micro-tears in the fascia, and the fascia thickens

Plantar fasciitis

Clinical features

 \odot Pain of the heel and sole of the foot

 Pain worsens after periods of inactivity (e.g., Morning pain, standing after prolonged sitting) and prolonged weight-bearing.

Diagnostics

 \circ Point tenderness along the plantar fascia (anteromedial aspect of the heel)

 \odot Ultrasound: plantar fascia thickening, edema at the insertion at the calcaneus

 \odot X-ray: may show bony outgrowth from the calcaneal tuberosity (heel spur)

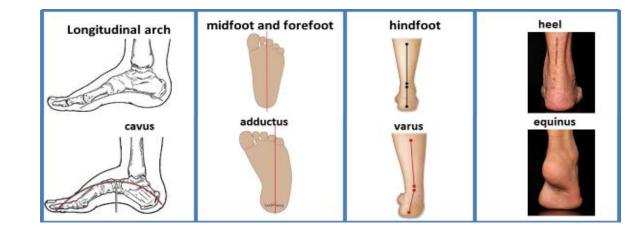
Treatment

 \odot Plantar foot and calf stretching exercises

 \circ Heel shoe inserts

• Avoid aggravating movements (e.g., running)

 \odot NSAIDs, glucocorticoid injection



Club foot (Congenital Talipes Equino Varus)

Deformity

Hindfoot equinus and varus
Midfoot cavus
Forefoot adductus
Limited dorsiflexion

Mechanism

- Dominant posterior musculature, especially tibialis posterior, weak peroneus muscles
- \odot Shortened Achilles tendon

Diagnostics

- Clinical diagnosis (prenatal detection via ultrasound possible)
- X-ray (can confirm clinical diagnosis): long axis of talus and calcaneus are parallel

Club foot – X-ray

AP view: Talocalcaneal angle (kite's) is < 20°

*Lateral view:

- Talocalcaneal angle of < 35° and flat talar head (normal is around 40°)
- \odot Taken with the foot in forced dorsiflexion

Club foot – Treatment

Manual repositioning and serial casting

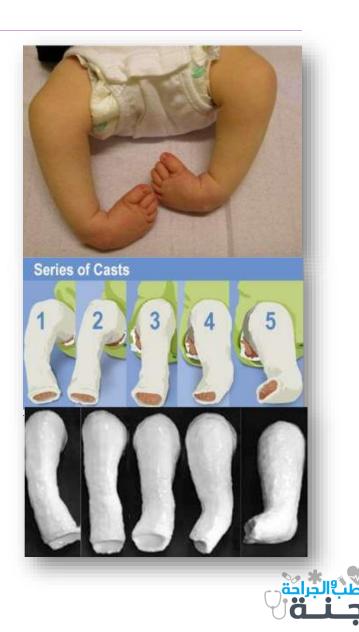
 Treatment phase: main components of the deformity are always corrected in the following order:

- C: Cavus
- A: Adductus
- V: Varus
- E: Equinus

• The Maintenance Phase: To prevent recurrence

- Bracing (abduction foot orthosis), Physiotherapy
- If manual repositioning is unsuccessful: surgical release of contractures and correction of bone alignment
- If not corrected early, 2ry growth changes occur in the bones & these are permanent (In late relapsed cases)

Ponseti method



Club foot

- (2) سنوات (2) What is your diagnosis ? Club foot
- (۱) سنوات (۲) What is the first treated deformity with this modality of treatment ?

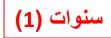
 $\circ \text{Cavus}$

(1) What is the recurrence rate with this treatment modality?
O High

جميعة سنوات بتصرف

One of these is a feature of this picture

- a. Pes cavas
- b. Pes planus
- c. Abductus
- d. Valgus


One of the following is not related to this deformity

- a. Cavus
- b. Adductus
- c. Equines
- d. Varus
- e. Pes planus

سنوات (2)

What is the deformity in forefoot?

- a. Cavus
- b. Adductus
- c. Equines
- d. Varus
- e. Pes planus

سنوات (3)

This method is used for the treatment of

- a. Pes cavus
- b. Pes planus
- c. Club foot
- d. Infantile flat foot

All the following regarding this deformity are true except

a. last step of management is varus

سنوات (1)

Which of the following is wrong about pes caves ?

a. On X ray diagnosis by the angel between calcaneus and navicular bone

Not the same pic

ىنوات (1)

Flat foot (pes planus)

The term 'flatfoot' applies when

- \odot The apex of the arch has collapsed
- \odot The medial border of the foot is in contact (or nearly in contact) with the ground
- \odot The heel becomes valgus
- \odot The foot pronates at the subtalar-midtarsal complex

Flat feet can produce

- $\circ\, \text{Tendonitis}$
- \circ Arthritis
- \odot Plantar fasciitis
- \odot Bunions & Hammertoes
- \odot Corns and callosities

Physiological Flat Foot

Standing on tip toe to differentiate between physiological and pathological flat feet

Flexible Flat Foot

- Appears a normal stage in development
- It usually disappears after a few years when medial arch development is complete, sometimes though it persists into adult life
- The arch can often be restored by simply dorsiflexing the great toe (jack's test) and during this maneuver the tibia rotates externally
- Many of the children with flexible flat-foot have ligamentous laxity and there may be a family history of both flat-feet, and joint hypermobility
- Usually there is no symptoms
- Management: stretching exercise and shoes inserts (medial arch support)

Infantile Flat Foot

(congenital vertical talus / congenital convex pes valgus)

It's a rare neonatal condition usually affects both feet

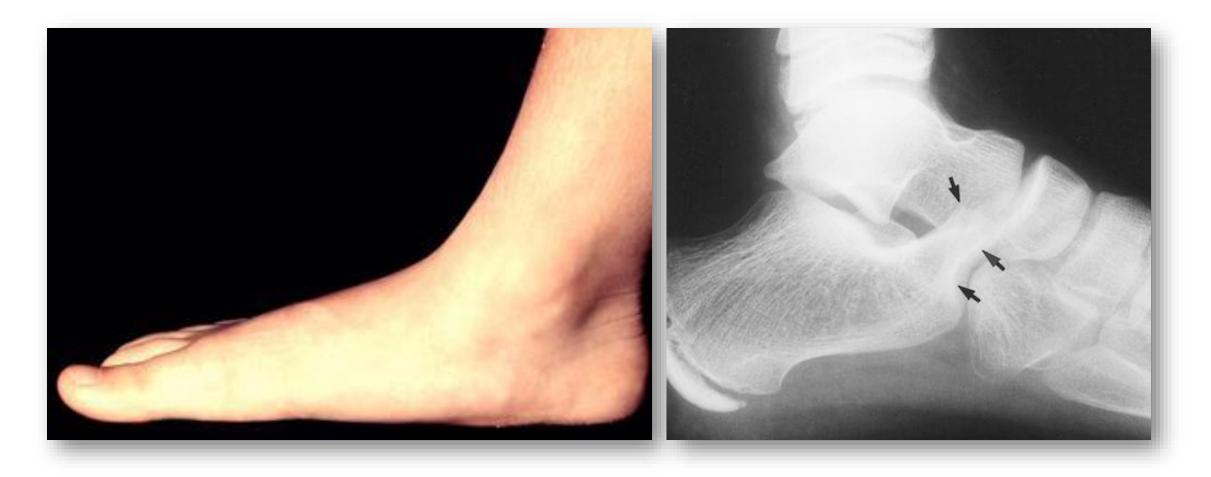
- The foot is turned outwards (valgus) and the medial arch is not only flat, but it also actually curves the opposite way from the normal, the appearance of a "rocker-bottom" foot
- The talus points almost vertically towards the sole; the forefoot is abducted, pronated and dorsiflexed, with subluxation of the talonavicular joint
- Passive correction is impossible

Infantile Flat Foot

The x-ray features are characteristic :

 \odot Talus point into the sole of the foot

 \odot The navicular bone is dislocated dorsally into the neck of talus


It is important to repeat the lateral x-ray with the foot maximally plantarflexed; in congenital vertical talus the appearance will be unchanged, whereas in flexible flatfoot the dorsally subluxated navicular returns to the normal position

The only effective treatment is by operation, ideally before the age of 2 years

Tarsal Coalition

Rigid Flat Foot

Structural anomaly between two or three tarsal bones causing a rigid flatfoot

Classification

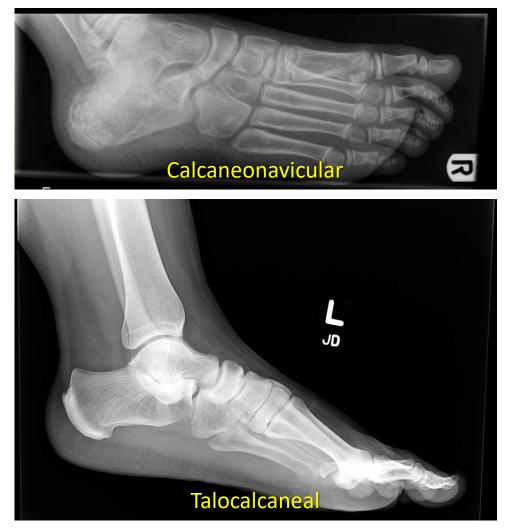
- Congenital (most common)
- Acquired (trauma, degenerative and infections)

Pathoanatomic classification

- Fibrous coalition (syndesmosis)
- Cartilagenous coalition (synchondrosis)
- \circ Osseous coalition (synostosis)

*Symptoms

- Asymptomatic
 - Most coalitions are found incidentally
 - 75% of people are asymptomatic
- \odot Pain worsened by activity


Rigid Flat Foot

Age of onset

 Calcaneonavicular (most common) usually 8-12 years old
 Talocalcaneal usually 12-15 years old

*Management

- \circ Nonoperative
 - observation, shoe inserts and immobilization with casting, analgesics.
- \circ Operative
 - coalition resection with interposition graft, +/- correction of associated foot deformity or arthrodesis

Acquired (Adult) Flat Foot

*Etiology

- Posterior Tibial Tendon Dysfunction (most common cause)
 - more common in women often presents in the sixth decade
- Inflammatory arthritis, such as rheumatoid arthritis
- ligament injuries, fractures and dislocations of the bones in the midfoot; Lisfranc injury
- Diabetic Collapse (Charcot Foot)

Acquired Flat Foot

Risk Factors

- \circ Obesity
- \circ Hypertension
- \circ Diabetes
- \odot Increased age
- Corticosteroid use
- Seronegative inflammatory disorders

Management

- Non operative; Ankle foot orthosis.
 - Immobilization in walking cast/boot.
 - Custom-molded in-shoe orthosis.
- \circ Operative
 - Tenosynovectomy
 - Tendon Transfer
 - Arthrodesis

سنوات (1) الخيارات من عندي

What is the muscle affected in this case ?

- a. Gastrocnemius muscle
- b. Plantaris muscle
- c. Posterior tibialis muscle
- d. Semitendinosus muscle
- e. Semimembranosus muscle

Which of the following is not a cause of this deformity

- a. Posterior Tibial Tendon Dysfunction
- b. Talocalcaneal
- c. Claw foot
- d. Calcaneonavicular
- e. Congenital vertical talus

Toe deformities

1. Hallux Valgus

 Definition: Varus angulation of the first metatarsal, predisposes to lateral angulation of the big toe in people wearing shoes and most of all in those who wear high-heeled shoe

$\circ \textbf{Epidemiology}$

- Most common forefoot deformity
- ♀ > ♂
- Positive family history in over 60 % of cases
- Etiology: multifactorial
 - Biomechanical instability
 - Poorly fitting shoe wear
 - Arthropathies (e.g., rheumatoid arthritis)
 - Connective tissue disorders (e.g., Ehlers-Danlos syndrome)
 - Neuromuscular diseases (e.g., multiple sclerosis)

Toe deformities

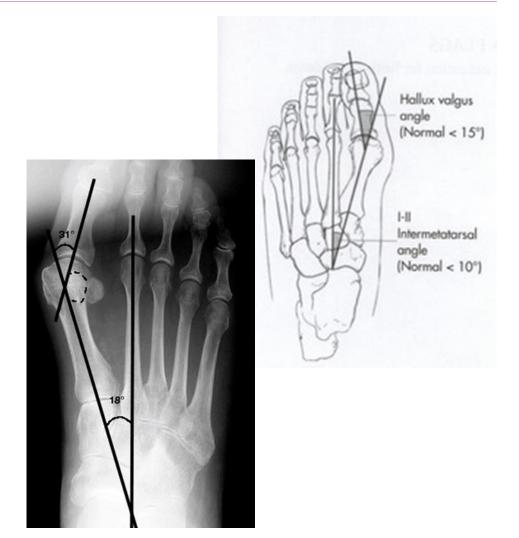
1. Hallux Valgus

Clinical features: usually bilateral

- Pain and inflammation (over the bunion)
- Secondary osteoarthritis in the first metatarsophalangeal joint
- Can lead to deviation of the remaining digits resulting in hammer and claw toes

\circ Diagnostics

- Inspection
- X-ray of the feet


\circ Treatment

- Conservative therapy
 - Special shoes and inlays
 - Orthoses
 - Pain management with NSAIDs and corticosteroid injections
- Corrective surgery is indicated if conservative therapy fails to relieve symptoms.

Hallux Valgus – X-ray

- Technique: Should be taken with the patient standing to show the degree of metatarsal and hallux angulation.
- Findings: The first metatarsophalangeal joint may be sublaxed, or it may look osteoarthritic.
- Interpretation: Lines are drawn along the middle of the first and second metatarsals and the proximal phalanx of the great toe
 - \odot Normally the intermetatarsal angle is less than 10 degrees
 - The valgus angle at the MTP joint less than 15 degrees.

Hallux valgus

What is your diagnosis ? • Hallux valgus

Risk factors

Wearing high-heeled shoesGenetic

According this deformity one of the following is false

- a. The big toe in valgus
- b. 1st metatarsal is in varus position
- c. Prominence caused by head of 1st metatarsal and bursa
- d. Talocalcaneous angle is used for diagnosis
- e. Usually, bilateral

نوات (3)

Toe deformities

2. Hammer toe

- Definition: a deformity of the lesser toes characterized by PIP flexion, DIP extension, and neutral MTP
- Epidemiology: most common deformity of the lesser toes
- $\circ \textbf{Etiology}$
 - Poorly fitting shoe wear
 - Polyneuropathy (e.g., diabetes mellitus, alcoholism)
 - Friedrich ataxia
 - Rheumatoid arthritis
 - Trauma
 - Charcot-Marie-Tooth disease
- \odot Patient present with ulcer or callosities over proximal IPJ

Toe deformities

3. Claw toe

 Definition: a deformity of the lesser toes characterized by MTP hyperextension with PIP and DIP flexion

 $\circ \textbf{Etiology}$

- Poorly fitting shoe wear
- Polyneuropathy (e.g., diabetes mellitus, alcoholism)
- \odot Pathophysiology
 - Caused by imbalance of the extrinsic and intrinsic muscles of the toes.

Hallux rigidus

- Definition: osteoarthritis of the first metatarsophalangeal joint, between the first metatarsal and the first proximal phalanx; characterized by hypertrophy of the sesamoid bones
- Clinical features: Presents with pain with axial loading and flexion/extension
- X-rays will show osteoarthritic changes

* Management

- \odot Conservative treatment
- \circ Operative; arthrodesis

Which of the following is the surgical treatment?

- a. Arthroplasty
- b. Arthrodesis
- c. Joint replacement
- d. pain medication and shoe modification

Orthopedic Pathology

Definition: a chronic disorder of synovial joints in which there is

- A. Progressive softening and disintegration of articular cartilage
- B. Accompanied by new growth of cartilage and bone at the joint margins (osteophytes)
- C. Cyst formation
- D. Sclerosis in the sub-chondral bone, mild synovitis
- E. Capsular fibrosis.

Epidemiology

- \odot Prevalence: most common joint disorder
- \odot Incidence: increases with age
- \circ Sex: > , especially in patients older than 50 years
- \odot Incidence rates in specific joints: knee > hip > hand

Risk factors

 \circ Modifiable risk factors

- Obesity
- Excessive joint loading or overuse (mechanical stress)
- \circ Nonmodifiable risk factors
 - Age (> 55 years)
 - Family history
 - History of joint injury or trauma
 - Anatomic factors causing asymmetrical joint stress
 - Hemophilic hemarthroses and deposition diseases that stiffen cartilage
 - Sex

Classification

 \circ Idiopathic (Primary) OA

• No identifiable underlying cause

 \circ Secondary OA

* Pathophysiology

 ○ Chronic mechanical stress on the joints and age-related decrease in proteoglycans → cartilage loses elasticity and becomes friable → degeneration and inflammation of cartilage → joint space narrowing and thickening and sclerosis of the subchondral bone

Clinical features

• Symptoms: Pain, Deformity, Stiffness, swelling

• Signs: Tenderness, Swelling, Muscle wasting, Deformity, Crepitus

Imaging

The presence of at least one of the radiological signs of osteoarthritis, in addition to typical clinical features, supports the diagnosis of osteoarthritis.

Radiological signs of osteoarthritis

- \odot Irregular joint space narrowing
- Subchondral sclerosis: a dense area of bone (visible on x-ray) just below the cartilage zone of a joint that forms as a result of a compressive load on the joint
- Osteophytes (bone spurs): spurs or densifications that develop on the edges of the joint, increasing its surface area
- Subchondral cyst: a fluid-filled cyst that develops on the surface of a joint due to local bone necrosis induced by the joint stress caused by osteoarthritis

Treatment

Follow a stepwise approach to treatment:

Start with nonpharmacological management, followed by pharmacological and/or surgical treatment if needed.

Nonpharmacological management: e.g., exercise and weight loss

○ Pharmacotherapy

- First line: e.g., topical or oral NSAIDs
- Second line: e.g., acetaminophen or intraarticular glucocorticoid injections

 Surgical management: e.g., complete or partial joint replacement (arthroplasty) using an endoprosthesis

Individualize treatment based on patient preferences, comorbidities, treatment goals, and available resources.

Consider referral to physical therapy or occupational therapy.

Surgical management

Arthroscopy

- o Indications: patients with meniscus or cartilage damage, or femoroacetabular impingement
- $\,\circ\,$ Procedures: debridement and lavage

*****Osteotomy:

- $\,\circ\,$ Realigns joints to relieve pain and potentially delay disease progression
- \circ Indication: young patients (typically \leq 60 years of age) with single compartment arthritis
- **Procedures**: tibial osteotomy for varus alignment; femoral osteotomy for valgus deformity

*Arthrodesis

- o Indication: patients with advanced, therapy-resistant osteoarthritis of the wrist and/or ankle
- Procedure: surgical fusion of the two bones that form the joint in a functional position; can be performed arthroscopically

Arthroplasty

- $\,\circ\,$ Indication: patients who have experienced inadequate relief using conservative measures
- $\circ\,$ Procedure: complete or partial replacement of a joint using an endoprosthesis
- Risks: infection, blood clot (e.g., deep vein thrombosis, pulmonary embolism), dislocation, implant failure

What is your DDx ?

 \circ Osteoarthritis

Mention 4 findings ?

- 1. Loss of joint space
- 2. Osteophyte
- 3. Subchondral sclerosis
- 4. Subchondral cyst
- 5. Bone fusion

65 Y/O patient with osteoarthritis, the chief complain is

- a. Deformity
- b. Loss of joint movement
- c. Mechanical pain
- d. Muscle wasting
- e. Swelling

خيارات من عندي

سنوات (1)

What is the mechanisms of this feature

- **a. Osteophytes**: Progressive softening and disintegration of articular cartilage
- **b. Osteophytes**: new growth of cartilage and bone at the joint margins
- **c.** Subchondral cyst formation: due to increased water permeability of synovial fluid
- **d.** Sclerosis in the sub-chondral bone: to lessen the load on bone to avoid fracture

What is the pathophysiology of this feature

- a. Progressive softening and disintegration of articular cartilage
- b. Due to increased water permeability of synovial fluid
- c. Increase the surface area
- d. Tear in the cartilage
- e. Increase water content in cartilage

In osteoarthritis, the pointed arrow resembles

- a. Sclerosis in the sub-chondral bone
- b. Subchondral cyst
- c. Osteophytes
- d. Capsular fibrosis

Pathophysiology of the defect seen in the picture is

- a. Increase water content in cartilage
- b. Increase water permeability
- c. Progressive softening and disintegration of articular cartilage
- d. New growth of cartilage and bone at the joint margins
- e. Sclerosis in the sub-chondral bone

خیارات من عندی

ىنوات (4)

Pt with osteoarthritis, what is the deformity shown in the X-ray

- a. Increase water content in cartilage
- b. Progressive softening and disintegration of articular cartilage
- c. Joint space narrowing
- d. New growth of cartilage and bone at the joint margins
- e. Sclerosis in the sub-chondral bone

خيارات من عندى

ينو ات (1)

All presentations are true for this case, except

- a. Joint line tenderness
- b. Genu Varus
- c. Widening of joint space
- d. Swelling and effusion
- e. Osteophyte and stiffness

Which of these symptoms won't be associated with this picture ?

- a. Genu Varus
- b. Loss of sensation on the medial leg
- c. Joint line tenderness
- d. Swelling and effusion
- e. Osteophyte and stiffness

Hip osteoarthritis

The initial management for this patient who presented with right intermittent dull hip pain:

- a. Hip arthrodesis
- b. Hip Osteotomy
- c. Hip replacement
- d. Analgesia and lifestyle modification
- e. Open reduction and internal fixation

Hip osteoarthritis

Long case history of old man 65 years with 2 years history of pain in the hip not responding to analgesia and interfering with his daily life, management ?

- a. Hip arthrodesis
- b. Hip Osteotomy
- c. Hip replacement
- d. Analgesia and lifestyle modification
- e. Open reduction and internal fixation

The most likely diagnosis

- a. Rheumatoid arthritis
- b. Osteomalacia
- c. Pseudogout
- d. Gout

Which of the following is incorrect about osteoarthrosis

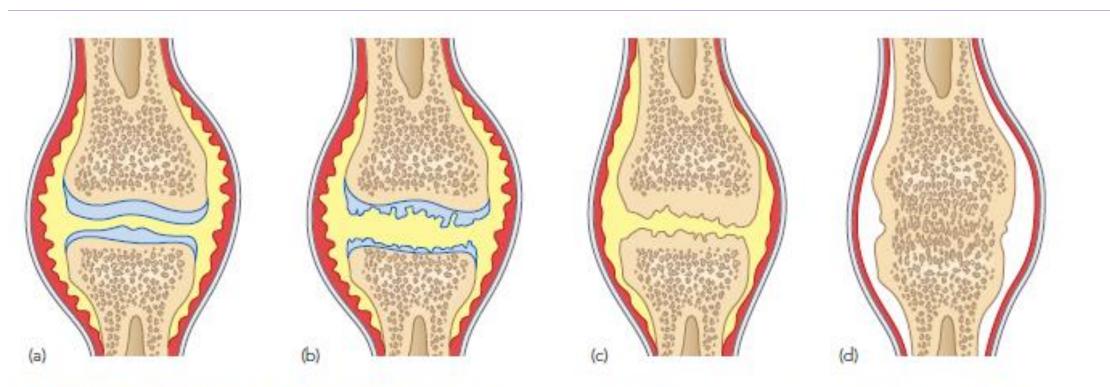
a. Gouty tophi

سنوات قديم

كتبت فقط أهم النقاط عن الموضوع

Causative organisms: (Most common causes)

- Staphylococcus aureus (Most common in adults and children > 2 years)
- \circ Streptococci
- \circ N. gonorrhea (Most common in sexually active young adults ($\circ > \circ$))
- Gram-negative rods esp. E. coli and P. aeruginosa (Immunosuppressed state, trauma, elderly, IV drug use)


Routes of spread

Hematogenous spread (most common)

- From a distant site (e.g., abscesses, wound infection, septicemia)
- Disseminated infection (e.g., gonorrhea)
- \odot Direct contamination
 - latrogenic (e.g., joint injection, arthrocentesis, arthroscopy)
 - Trauma (e.g., open wounds around the joint, penetrating trauma)
- Contiguous spread (e.g., septic bursitis, osteomyelitis)

Pathology

2.5 Acute suppurative arthritis – pathology In the early stage (a), there is an acute synovitis with a purulent joint effusion. (b) Soon the articular cartilage is attacked by bacterial and cellular enzymes. If the infection is not arrested, the cartilage may be completely destroyed (c). Healing then leads to bony ankylosis (d).

Clinical features

Acute onset

Classical triad of fever, joint pain, and restricted range of motion

Arthritis

- \circ Usually, monoarticular
- Most affected joints: knees (followed by hip, wrists, shoulders, and ankles)
- Joints are swollen, red, warm, and painful

Diagnostics

- Any red, painful joint with a reduced range of motion should be considered infectious until proven otherwise. The absence of fever does not rule out a diagnosis of septic arthritis
- All patients should do
 - Arthrocentesis with synovial fluid analysis and culture (gold standard)
 - Skin or subcutaneous infection (e.g., cellulitis) surrounding the affected joint is an absolute contraindication due to the risk of introducing pathogens into the joint
 - \odot Blood cultures in patients with fever or acute onset of symptoms
 - Laboratory studies (Inflammatory markers may be normal in septic arthritis)
 - X-rays of the affected joint (preferred initial imaging modality (prosthetic and native joints))

Treatment

The first priority is to aspirate the joint and examine the fluid.

Treatment is then started without further delay and follows the same lines as for acute osteomyelitis.

1. Antibiotics

- Intravenous antibiotics (3rd Generation Cephalosporins will cover both Grampositive and Gram-negative organisms.) should be started as soon as joint fluid and blood samples have been taken for culture.
- \circ Once the bacterial sensitivity is known the appropriate drug is substituted.
- Intravenous administration is continued for several weeks and is followed by oral antibiotics for a further 2 or 3 weeks.

2. Splintage

 The joint must be rested either on a splint or in a widely split plaster. At the hip, the joint should be held abducted and 30 degrees flexed.

Synovial fluid analysis

	NORMAL	Non- Inflammatory	Inflammatory	Septic	Hemorrhagic
Clarity	Transparent	Transparent	Translucent	Opaque	Bloody
Colour	Clear	Yellow	Yellow	Dirty/Yellow	Red
Viscosity	High	High	Low	Variable	Variable
WBC/mm3	<200	200-2,000	2000-10,000 (up to 100,000)	>80,000	200-2,000
PMNs%	<25%	<25%	>50%	>75%	50-75%

Depending on the clinical scenario, synovial fluid is analysed for:

- Cell count and differential
- Crystals
- Culture and sensitivity (if septic arthritis suspected)
- Cytology (if malignancy suspected)

Treatment

3. Drainage

- O Under anesthesia, pus is drained, and the joint washed out.
- This is best done by open operation, but in a superficial joint it can be achieved by repeated needle aspiration and irrigation or, in the case of the knee, by arthroscopy.
- Once the patient's general condition is good and the joint is no longer inflamed, gentle and gradually increasing movements are encouraged. But if articular cartilage has been destroyed, the aim is to keep the joint immobile in the optimum position while ankylosis is awaited.

- ➢ This patient had a high fever and elevated ESR, and on doing synovial fluid analysis, had a WBC count of 140000.
- What is the best next step of management ?
 - a. Arthrotomy

نوات (5)

This patient present with acute knee pain, blood investigation revealed elevated CRP and uric acid, Joint aspiration is shown on the second image

What is your management for this patient ?

- a. Elevation, ICE and compression
- b. Incision and drainage
- c. Start IV antibiotics
- d. Start NSAIDs and colchicine
- e. Above Knee cast

Patient came to ER With knee pain 1 day duration and the temperature was 39

What is your diagnosis ?

 \circ Septic arthritis

What is your management ?

Surgery (Arthrotomy or Arthroscopy)

Child feverish 39.5

The most common emergent DDx ?

 $\circ \, \text{Septic hip}$

What is your management ?

 \circ Surgery (Arthrotomy or Arthroscopy)

Osteomyelitis

Osteomyelitis

Definition: Infection of the bone

Hematogenous osteomyelitis

- $\odot\,\textsc{More}\xspace$ common in children and adolescents
- O Incidence is increasing in adults, driven by a rise in vertebral osteomyelitis
- Etiology: Caused by hematogenous dissemination of a pathogen

***Exogenous osteomyelitis**: more common in adults

- Etiology: caused by a spread of bacteria (typically multiple pathogens) from the surrounding environment
 - Posttraumatic
 - Contiguous: spread of infection from adjacent tissue
 - Secondary to infected foot ulcer in patients with diabetes
 - latrogenic (e.g., postoperative infection of a prosthetic joint implant)

Most common pathogens causing osteomyelitis

Pathogens	Commonly affected groups
Staphylococcus aureus	 Children and adults Individuals that recreationally use IV drugs Patients with vertebral lesions Patients with prosthetics Diabetic patients with foot ulcers and pressure ulcers
Staphylococcus epidermidis	Patients with prosthetics
Streptococci	 Diabetic patients with foot ulcers and pressure ulcers Neonates and infants
Pseudomonas aeruginosa	 Persons who inject drugs Plantar puncture wounds (especially if wearing rubber-soled footwear)
Salmonella	Patients with sickle cell anemia
Klebsiella	Patients with UTIs
Pasteurella multocida	Bites from dogs and cats
Fungi (e.g., Candida)	 Immunocompromised patients Individuals that recreationally use IV drugs

The classical changes and progression

- Inflammation; earliest change, The intraosseous pressure rises, causing intense pain and obstruction of blood flow.
- Suppuration; By the second day pus appears in the medulla and forces its way along the Volkmann canals to the surface, where it forms a subperiosteal abscess. It then may undergo spreading along the shaft, to re-enter the bone at another level, or bursts out into the soft tissues.
- Necrosis; The rising intraosseous pressure, vascular stasis, infective thrombosis and periosteal stripping increasingly compromise the blood supply, by the end of 1 week there is usually evidence of necrosis.
- New bone formation; New bone forms from the deep layer of the periosteum (Cambium), Involucrum may be seen.
 - If the infection persists, pus may discharge through perforations (cloacae) in the involucrum and track by sinuses to the skin surface; the condition is now established as a chronic osteomyelitis.
- Resolution; If the infection is controlled and intraosseous pressure released at an early stage.

Osteomyelitis

	Acute Osteomyelitis	Subacute Osteomyelitis	Chronic Osteomyelitis
Duration	< 2 weeks	2-6 weeks	> 6 weeks
Clinical features	fever, malaise, localized joint pain with redness and swelling .	mild symptoms and Pain is the most common symptom. **Night pain that is relieved with aspirin is frequently reported.	recurrent bouts of pain, redness and tenderness at the affected site, healed and discharging sinuses
imaging findings	no findings on x-ray on mri there is marrow edema	Brodie's abscess	bone rarefaction , dense sclerosis , sequestrum , involucrum
Treatment	if marrow edema only then IV antibiotic and bed rest . if edema+pus then drainage+IV antibiotic .	same as acute	always surgery
NOTES	**mcc is staph aureus	**DDX are osteoid osteoma and non ossifying fibroma if Dx is in doubt do an open biopsy . **mcc is staph aureus.	<pre>**nowadays it more frequently follows an open fracture or operation. *mcc is S. epidermidis</pre>

Complications

- Spread: infection may spread to the joint (septic arthritis) or to other bones (metastatic osteomyelitis).
- Pathological fracture: occasionally the bone is so weakened that it fractures at the site of infection or operative perforation.
- Growth disturbance: if the physis is damaged there may later be shortening or deformity.
- Persistent infection: treatment must be prompt and effective. 'Too little too late' may result in chronic osteomyelitis.

Patient present with sinus discharging

What is the most common organism causing this condition ? • Staphylococcal

Osteoporosis

Osteoporosis

* Definition

 Osteoporosis: loss of trabecular and cortical bone mass which leads to bone weakness and increased susceptibility to fractures

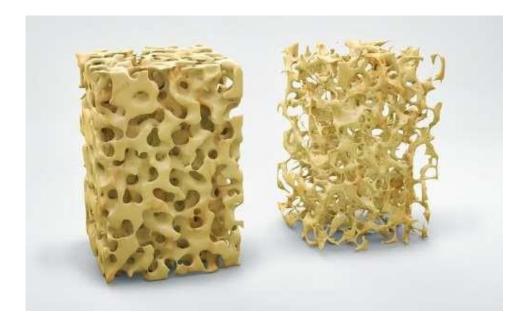
 \odot Osteopenia: decreased bone strength but less severe than osteoporosis

Epidemiology

○ Sex: ♀ > ♂ (~ 4:1)

 \odot Age of onset: 50–70 years

*****Etiology:


 \odot Women are predominantly affected by primary osteoporosis

 \odot Men are mostly affected by secondary osteoporosis

What is the pathology ?

- a. Osteomalacia
- b. Osteomyelitis
- c. Rickets
- d. Osteoporosis

سنوات (1)

Primary osteoporosis (most common)

Type I (postmenopausal osteoporosis): postmenopausal women

- \odot Estrogen stimulates osteoblasts and inhibits osteoclasts.
- \odot The decreased estrogen levels following menopause lead to increased bone resorption.

Type II (senile osteoporosis): gradual loss of bone mass as patients age (especially > 70 years)

 \odot Osteoblast activity decreases, leading to less osteoid production.

Idiopathic osteoporosis

- \odot Idiopathic juvenile osteoporosis
- \odot Idiopathic osteoporosis in young adults
 - Osteoporosis that primarily affects the vertebra and is seen in individuals under 50 years of age. Typical risk factors are the same as for postmenopausal osteoporosis.

Secondary osteoporosis

Drug-induced/iatrogenic

 \odot Most commonly due to systemic long-term therapy with corticosteroids

*****Endocrine/metabolic:

Hypercortisolism, hypogonadism, hyperthyroidism, hyperparathyroidism, renal disease

Multiple myeloma

Additional risk factors

- Excessive alcohol consumption
- Cigarette smoking
- Immobilization or inadequate physical activity
- Malabsorption (e.g., celiac disease), malnutrition (e.g., diet low in calcium and vitamin D), anorexia
- Low body weight
- Family history of osteoporosis
- Personal history of fracture

Clinical features

Mostly asymptomatic

- Fragility fractures: pathological fractures that are caused by everyday-activities (e.g., bending over, sneezing) or minor trauma (e.g., falling from standing height)
 - \odot Common locations of major osteoporotic fractures:
 - Vertebral (most common) > femoral neck > distal radius (Colles fracture) > other long bones (e.g., proximal humerus)
 - \odot Vertebral compression fractures
 - Commonly asymptomatic but may cause acute back pain and possible point tenderness without neurological symptoms

Radiographic features

- Decreased bone density can be appreciated by decreased cortical thickness and loss of bony trabeculae in the early stages in radiography.
- Bones like the vertebra, long bones (proximal femur), calcaneum and tubular bones are usually looked at for evidence of osteoporosis. Nevertheless, dual energy x-ray absorptiometry (DEXA) is the gold standard of diagnosing osteoporosis

Normal

Bone looks less white (darker) and trabecular lines are more prominent

Diagnostics – Approach

*Assess **BMD** and **estimate the risk of major osteoporotic fracture**.

The diagnosis is confirmed if any of the following diagnostic criteria for osteoporosis are fulfilled.

○ T-score ≤ -2.5 standard deviations (SDs) on dual-energy x-ray absorptiometry (DXA)

• History of a major osteoporotic fragility fracture (regardless of BMD)

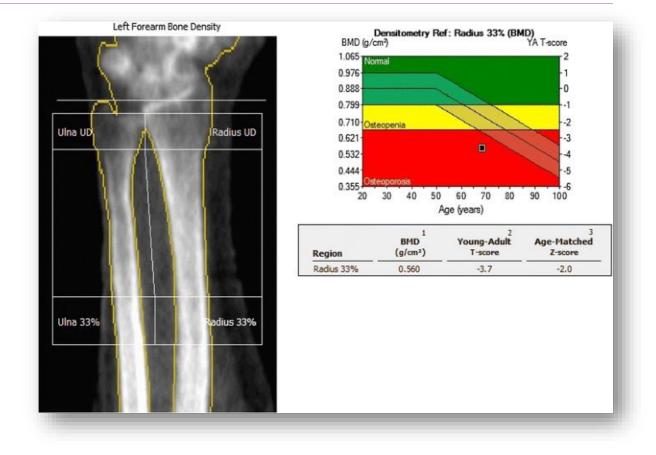
*****Once confirmed:

Consider screening all patients for common causes of secondary osteoporosis.
 Evaluate high-risk patients for vertebral fractures. (They are common in patients with osteoporosis, asymptomatic in up to two-thirds of cases, and associated with a high risk of future fractures)

Consider bone turnover markers (BTMs) to assess fracture risk and monitor treatment response.

Bone mineral density (BMD) assessment

Indications


- \odot Evaluation of suspected osteoporosis
- \odot Screening for osteoporosis in asymptomatic high-risk individuals
- Preferred modality: dual-energy x-ray absorptiometry
- DEXA measures BMD at the lumbar spine and hip/femoral neck using two x-ray beams. Findings are represented in terms of BMD scores that compare results to a reference population.

BMD scores				
Postmenopausal women and men > 50 years of age	 <u>BMD</u> is calculated using the T-score. <u>T-score</u> ≤ -2.5 SD indicates osteoporosis <u>T-score</u> -1 to -2.5 SD indicates osteopenia <u>T-score</u> ≥ -1 SD is normal 			
All other individuals	 <u>BMD</u> is calculated using the <u>Z-score</u>. <u>Z-score</u> < -2 indicates <u>BMD</u> likely lower than expected for age 			

37 female come to clinic with DEXA scan report

What is the next step ?

- a. History and physical examination
- b. send to gynecologist
- c. send to endocrinologist

ىنوات (1)

سنوات (1)

DEXA Scan

40 years old female patient comes to the clinic with a DEXA scan, her mean z score = -0.5 کان مع السؤال صورة الفحص t score = -2

- a. Normal study
- b. Osteoporosis
- c. Osteopenia
- d. Osteomalacia
- e. Osteoarthritis

Vertebral compression fracture

65 years old patient felt a back pain from leaning forward presented with shown image, What investigation we should do for follow up ?

- a. DEXA scan
- b. SPECT scan
- c. Tumor markers

الصورة من عندى

Fracture risk assessment

- Several calculators are used to estimate fracture risk during the diagnostic workup or screening for osteoporosis. (e.g., FRAX[®], Garvan, and the American Bone Health fracture risk calculator)
- FRAX (commonly used): estimates the 10-year probability of a major osteoporotic fracture

Questionnaire: 1. Age (between 40 and 90 years) or Date of Age: Date of Birth: Y: M: 2. Sex O Male	10. Secondary osteoporosis of Birth 11. Alcohol 3 or more units/day D: C Female Select BMD	● No● Yes● No● Yes
3. Weight (kg)	Clear Calculat	te
4. Height (cm)		
5. Previous Fracture	No O Yes	
6. Parent Fractured Hip	No O Yes	
7. Current Smoking	No O Yes	
8. Glucocorticoids	No O Yes	
9. Rheumatoid arthritis	No O Yes	

Laboratory studies

Consider screening all patients with newly diagnosed osteoporosis for common causes of secondary osteoporosis.

Routine studies

CBC, CMP, PTH, phosphate, and serum 25-hydroxyvitamin D
 24-hour urine to measure calcium, creatinine, and sodium levels

Additional studies

 Evaluate for specific etiologies of secondary osteoporosis as guided by clinical assessment (e.g., celiac antibodies, TSH, myeloma screen).

 \odot Consider BTMs to assess fracture risk and monitor treatment response.

Treatment – Approach

All patients: Optimize bone health.

- \odot Optimize calcium and vitamin D intake.
- Encourage physical activity, including strength (resistance) and balance training.
- Avoidance or minimization of tobacco use, excessive alcohol consumption, and glucocorticoid use
- Older patients: Assess for and manage risk factors for falls.
- Start pharmacotherapy in the following situations:
 - Diagnostic criteria for osteoporosis fulfilled (Treatment)
 - Patients with osteopenia at increased risk of major osteoporotic fracture in the next 10 years (Prevention)

Bisphosphonates

Indications: preferred initial treatment in all patients

- Mechanism of action: inhibition of osteoclasts, which are involved in bone resorption
- Agents; The following are approved for both prevention and treatment of osteoporosis:

 \odot Alendronate, Risedronate, and Zoledronic acid

*Adverse effects:

 \odot Osteonecrosis of the jaw

- \odot Atypical femoral fractures
- \circ Esophagitis
- \circ Hypocalcemia

Non-bisphosphonates

General indications:

- \odot Alternative first-line agents in patients with contraindications to bisphosphonate therapy
- Second-line agents in those who do not tolerate or improve with bisphosphonates or are unable to tolerate bisphosphonate therapy (e.g., due to adverse effects)

Other specific indications:

Drug	Specific use	ΜΟΑ	A/Es
Denosumab	Patients with impaired renal function	Monoclonal antibody against RANK-L	HypocalcemiaOsteonecrosis of the jaw
Teriparatide	 Alternative for patients at high or very high risk of fracture Treatment of glucocorticoid-induced osteoporosis 	Recombinant human parathyroid hormone	HypercalcemiaIncrease risk for osteosarcoma
Raloxifene	Can be used in patients at increased risk of breast cancer	Selective estrogen receptor modulator	Increased risk of venous thromboembolism

Osteomalacia & Rickets

Osteomalacia and rickets

Vitamin D-dependent forms (most common)

- Etiology
 - Vitamin D deficiency, Defective vitamin D metabolism
- \odot Pathophysiology
 - Hypocalcemia \rightarrow defective bone matrix mineralization
 - Hypocalcemia $\rightarrow \uparrow$ PTH levels $\rightarrow \downarrow$ phosphate levels \rightarrow impaired mineralization

Vitamin D-independent forms (rare)

- \circ Etiology
 - Renal tubular defects, Phosphate deficiency, Drugs (e.g., Bisphosphonates)
- \circ Pathophysiology
 - Phosphate deficiency $\rightarrow \downarrow$ phosphate blood levels \rightarrow defective bone matrix mineralization

Clinical features - Osteomalacia

- Bone pain and tenderness
- Pathologic fractures
- Waddling gait and difficulty walking
- Myopathy
 - \circ Muscle weakness
 - \circ Spasms
 - \circ Cramps
- Bone deformity only in very severe cases of osteomalacia
- Symptoms of hypocalcemia

Clinical features - Rickets

Only occurs in children

Bone deformities

- \odot Bending of primarily the long bones
- \odot Distention of the bone-cartilage junctions
 - Rachitic rosary: bead-like distention of the bone-cartilage junctions in the ribs
 - Marfan sign: distention of the epiphyseal plate of the distal tibia with widening and cupping of the metaphysis gives the impression of a double medial malleolus on inspection and palpation of the ankle
- Craniotabes: softening of the skull

 \odot Deformities of the knee, especially genu varum

Increased risk of fracture

Harrison groove: depression of the thoracic outlet due to muscle pulling along the costal insertion of the diaphragm

Late closing of fontanelles

Impaired growth

Imaging

Imaging findings in osteomalacia and rickets				
	Osteomalacia	Rickets		
Bone mineral density	• ↓			
Cortices	• Thinned			
Other findings	 Looser zones (pseudofractures): transverse bands of radiolucency indicating defective calcification of osteoid Milkman syndrome Multiple, almost symmetrical pseudofractures in the cortex of bones Visible as radiolucent bands with decreased density on x-ray Ribs, pubic rami, iliac bones, neck of femur, radii and ulnae, and scapula are predominantly affected. 	 Growth plates in the metaphysis of the long bones are less defined and show cupping, stippling, and fraying Wide <u>epiphysis</u> In severe cases, Looser zones and <u>fractures</u> Chest <u>X-ray</u>: prominent costochondral junctions (see <u>Rachitic</u> rosary above) Evidence of bone deformities (see "Clinical features" above) 		

What are the names of the following deformities ?

Rachitic rosary Harrison sulcus

Craniotabes

سنو ات

What are the names of the following deformities ?

Genu vara

Looser fracture

سنوات

Labs and Treatment

Laboratory tests

- $\circ \checkmark$ Calcium and \checkmark phosphate
- $\circ \uparrow$ Alkaline phosphatase and \uparrow PTH

Treatment

 \odot Vitamin D deficiency: administration of vitamin D

- Also indicated in infants who are exclusively breastfed
- The healing of both osteomalacia and rickets requires adequate daily intake of calcium.
- Defective vitamin D metabolism or vitamin D-independent forms: treatment of underlying disease

Rickets

(۱) منوات (۱) Nutritional lab finding in rickets children

a. High parathyroid hormone

(2) منوات (2) Mention two investigations

Vitamin D
level PTH
level KFT

One of these sentences is wrong about this case

- a. Ca+2 level is normal or low
- b. Bowing of long bone
- c. Low vit D level
- d. Thickening of physis and cortex
- e. Serum alkaline phosphate is high

What is incorrect about the disease shown in this X-ray ?

- a. Cortex thinning
- b. Thickening of physis
- c. Ca levels are decreased
- d. It is due to vitamin D deficiency
- e. Serum alkaline phosphate is low

نفس الصورة جاء عليها خيارات مختلفة بالأرشيف فقط مذكور الجواب فجمعتهم على بعض وكتبت السؤال بالإضافة انه أخر خيارين جبتهم من السؤال السابق فالسؤال ممكن يجي أي وحدة منهم الغلط والباقي صح

The most common cause of this fracture

- a. Significant trauma
- b. Malignancy
- c. Over activity
- d. Benign tumor
- e. Vit. D deficiency

Looser fracture

نوات (4)

Bone Tumors

Introduction to Bone Tumors

Diagnosis and Approach

1. Precise History and physical examination

- Pain (most common symptom), Lumpy swelling, Local tenderness, Constitutional symptoms, Pathological fracture, Exclude conditions that can mimic tumors
- 2. Blood investigations
 - CBC, CRP, ESR, alkaline phosphate , LDH
- 3. Imaging
 - X-ray: first imaging modality, Chest x-ray for metastasis
 - CT scan
 - 1. To rule out mets. (Chest, abdomen, pelvis)
 - 2. When cortical involvement is questionable
 - 3. Intraarticular tumors
 - MRI: Surrounding soft tissue involvement, Mets. If CT is insignificant
 - Radionuclide scanning with 99mTc-HDP: Sites of small tumors

Introduction to Bone Tumors

Diagnosis and Approach

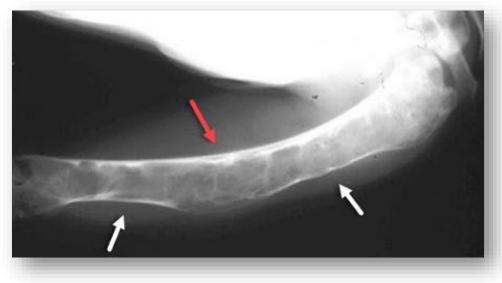
- 4. Biopsy (Definitive diagnosis)
- 5. Treatment
 - Benign
 - Benign, symptomatic or enlarging tumors: Complete local excision
 - Malignant
 - Chemotherapy, Radiotherapy, Amputation versus limb salvage procedures
 - Prognosis: Overall stage of disease, Presence of metastasis, Skip (discontinous) lesions within the same bone, Histologic grade, Tumor size.

Enneking System

Stage	Grade	Site
IA	Low G1	Intracompartmental T1
IB	Low G1	Extracompartmental T2
IIA	High G2	Intracompartmental T1
IIB	High G2	Extracompartmental T2
IIIA	Any grade with regional or distal metastases	Intracompartmental T1
IIIB	Any grade with regional or distal metastases	Extracompartmental T2

Malignant tumours are classified as IA, IB, IIA, and IIB depending on degree of spread.

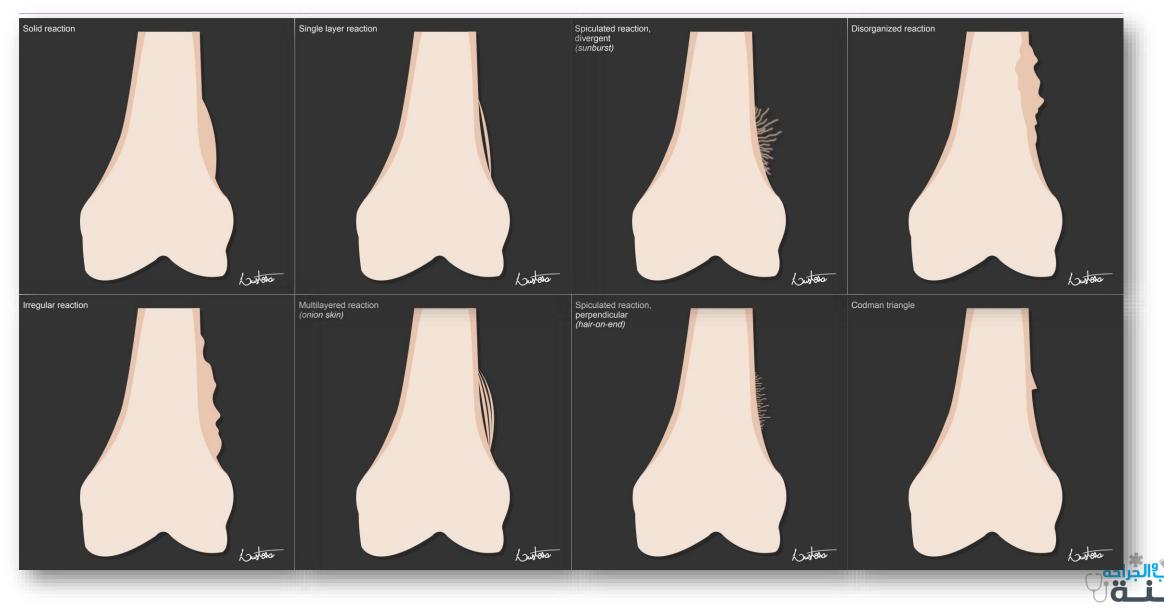
Adapted from Enneking WF. A system of staging musculoskeletal neoplasms. Clin Orthop Relat Res 1986;**204**:9–24.



Radiological findings

*Radiological findings that indicate benign bone tumor

- \odot Well defined localized, with sclerotic margins
- \circ No cortical disruption (Cortical thinning)
- $\odot\,\text{No}$ periosteal reaction


 Bone deformity is a sign of benign lesions (long-term, slow process)

Periosteal reaction of malignant tumors

All of the following are feature of bone malignancy except

- a. Thinning of the cortex
- b. Codman's triangle
- c. Sunburst appearance
- d. Cortical destruction
- e. Periosteal reaction

Bone tumors

Benign

- Non-ossifying fibroma (fibrous cortical defect)
- Fibrous dysplasia
- Osteoid osteoma
- Chondroma (enchondroma)
- Osteochondroma (cartilage capped exostosis)
- Chondroblastoma
- Simple bone cyst
- Aneurysmal bone cyst
- Giant-cell tumor

Malignant

Primary Osseous

- Osteosarcoma
- \circ Chondrosarcoma

Primary Non-osseous

- \odot Ewing's sarcoma
- Multiple Myeloma /
 - Plasmacytoma
- \circ Non-Hodgkin's Lymphoma

Metastatic bone disease

Non-ossifying fibroma (fibrous cortical defect)

The commonest benign lesion of bone.

Benign

Clinical features: asymptomatic and is almost always encountered as an incidental finding on x-ray.

***Usual sites** are **metaphysis** of long bones.

X-rays: The appearance is unmistakable. There is an oval radiolucent area in or adjacent to the cortex.

Predominant tissue: Although it looks cystic on x-ray, it is a solid lesion consisting of unremarkable fibrous tissue.

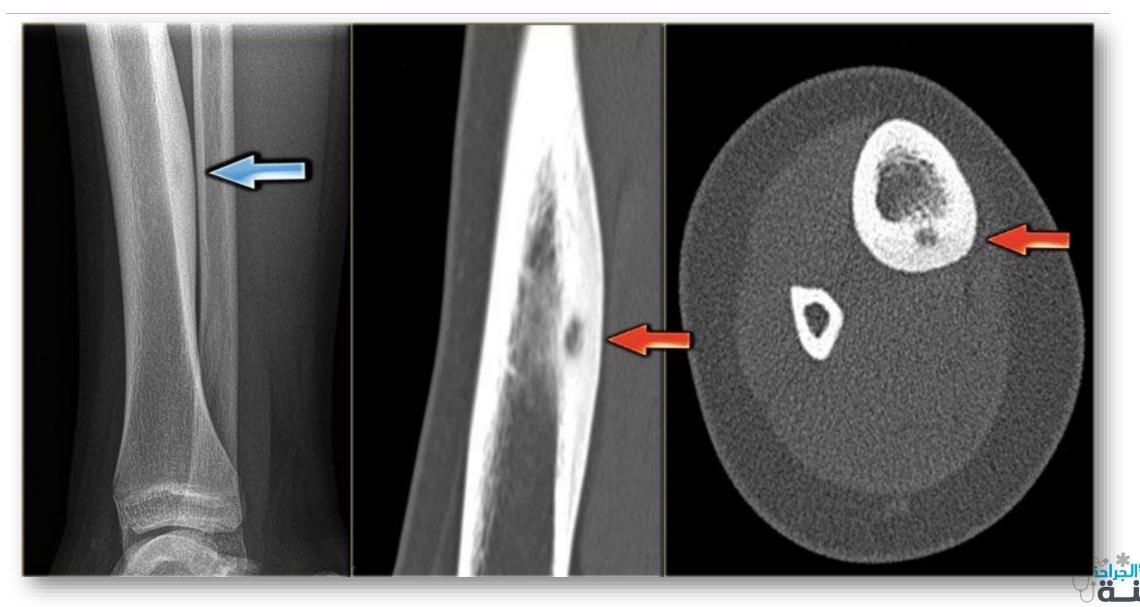
As the bone grows it heals spontaneously, it may enlarge and cause pathological fracture.

Treatment: except for a pathological fracture treatment is conservative and follow up.

Fibrous dysplasia

Developmental disorder

- Clinical features: The weight-bearing bones may be bent, and one of the classic features is the 'shepherd's crook' deformity of the proximal femur
- Site: The condition may affect one bone (monostotic), one limb (monomelic) or many bones (polyostotic)
- X-rays: Cyst-like areas in the metaphysis or shaft have a hazy (so-called ground-glass)
- Predominant tissue: Areas of trabecular bone are replaced by fibrous tissue, osteoid and woven bone.
- Pathology: The histological picture is of cellular fibrous tissue with patches of woven bone and scattered giant cells.


Osteoid osteoma

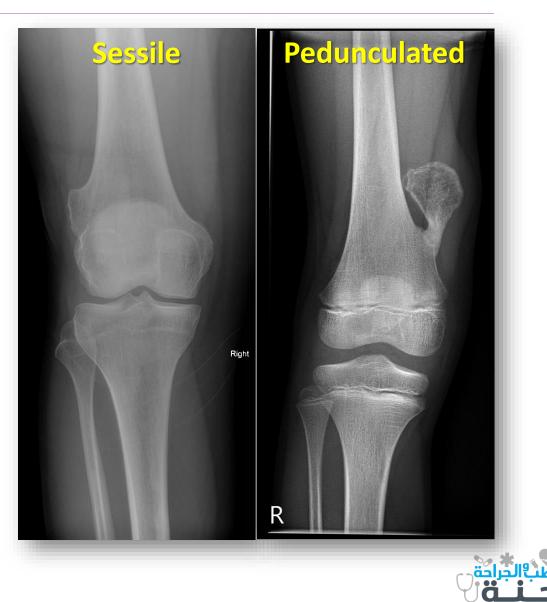
- Clinical features: the leading symptom is pain which is sometimes sever, usually relieved by aspirin not by rest.
- It is small (usually less than 1 cm) round or oval in shape and encased in dense bone. Usually in patient under 30 years, and over one half of cases occur in the femur or tibia.
- **X-rays**: The important feature is a tiny radiolucent area, the so called 'nidus'
- Predominant tissue: Benign tumor consisting of osteoid and newly formed bone
- ***DDx**: small Brodie's abscess (may need biopsy).
- Treatment : complete removal of the nidus or Radiofrequency ablation

Osteoid osteoma

Chondroma (enchondroma)

Clinical features: Chondromas are usually asymptomatic and discovered incidentally on x-ray or after a pathological fracture.

- Pathology: The tensional tissue is indistinguishable from normal hyaline cartilage, but there is often a central area of degeneration and calcification.
- Treatment: Painful or enlarging or if it presents as a pathological fracture, it should be removed as thoroughly as possible with curettage, the defect is filled by bone graft
- There is a small risk of malignant transformation, suspect in adults if
 - 1.Onset of pain 2.Enlargment of the lesion 3.Cortical erosions
 - if these features are present treat as a low-grade malignancy



Osteochondroma (cartilage capped exostosis)

Clinical features: The patient is usually a teenager or young adult when the lump is first discovered. The exostosis may go on enlarging up to the end of the normal growth period for that bone; any further enlargement after that is suggestive of malignant change.

Benign

Treatment: If the tumor causes symptoms, it should be excised; if, in an adult, it has recently become bigger or painful then operation is urgent, for these features suggest malignancy, even if the histology looks 'benign'.

Chondroblastoma

- Clinical features: The presenting symptom is aching and tenderness adjacent to the joint.
- Site: Is one of the very few lesions to appear primarily in the epiphysis, usually of the proximal humerus, femur or tibia.
- Predominant tissue: This rare tumor of immature cartilage cells

Treatment

- In children the risk of damage to the physis makes it risky to remove the lesion.
- In adults this is not a problem; however, there is a high risk of recurrence after incomplete removal, and if this happens repeatedly there may be serious damage to the nearby joint

Simple bone cyst

This is a true solitary or unicameral bone cyst.

- Clinical features: The condition is usually discovered after a pathological fracture or as an incidental finding on x-ray.
- Site: It appears during childhood, typically in the metaphysis of one of the long bones and most commonly in the proximal humerus or femur.
- It is not a tumour, tends to heal spontaneously and is seldom seen in adults.

Treatment

- Asymptomatic lesions in older children can be left alone but the patient should be cautioned to avoid injury which might cause a fracture.
- 'Active' cysts (those in young children, usually abutting against the physeal plate and obviously enlarging in sequential x-rays) should be treated.

Aneurysmal bone cyst

Site: Cystic tumor like lesion, occurs chiefly in the spine and metaphysis of long bones.

- Usually affects young adults, no risk of malignant transformation.
- It may expand and cause marked thinning of the cortex.
- Predominant tissue: Contains clotted blood and lined by a flesh membrane

Giant-cell tumor

Giant-cell tumor is a lesion of uncertain origin that appears after the end of bone growth.

- Aggressive lesions have a poorly-defined 'floor' and appear to extend into the surrounding bone.
- About one-third of these tumor remain truly benign; one-third become locally invasive and one third metastasize.
- Clinical features: The patient is usually a young adult who complains of pain at the end of a long bone; sometimes there is slight swelling. Pathological fracture occurs in 10–15% of cases.

Osteosarcoma

*Etiology

 \circ Primary osteosarcoma: unknown

 Secondary osteosarcoma: Paget's disease of bone, radiation injury, bone infarction

* Epidemiology

 \circ Incidence: bimodal distribution

- Primary osteosarcoma: puberty/adolescence
- Secondary osteosarcoma: advanced age

 \circ Sex: $\sigma > \varphi$

The sites most commonly involved are the metaphyseal region of long tubular bones, especially the region around knee joint 50%

Osteosarcoma

Clinical features: Pain is usually the first symptom; it is constant, worse at night and gradually increases in severity. Sometimes the patient presents with a lump. Pathological fractures are rare.

Investigations

○ Labs: ESR (raised), Serum alkaline phosphatase raised

- \circ Imaging: X-ray, CT, MRI and Radioisotope scan \rightarrow skip lesions
 - Chest X-ray \rightarrow done routinely
 - Pulmonary CT \rightarrow (to R/O metastatic dis.)

 \circ Biopsy

○ Bone scan

Treatment: 1.Chemotherapy, 2. Surgery, 3. Amputation

Prognosis: Depends mainly on the presence of metastasis at presentation

Chondrosarcoma

Arise from mesenchymal cells that produce cartilage

Location: Arises in the medulla of the long tubular bones, mostly in the lower limbs. The next most common sites are the pelvis, central skeleton and the ribs.

Occur either as primary tumor or a secondary change in a preexisting benign chondroma or osteochondroma.

*****Treatment

• Complete surgical excision, as these tumor doesn't respond to chemotherapy.

• Recurrence rate is high.

 ○ Prognosis is related to grade of tumor (Low grade → better prognosis) and the ability to completely surgically remove it

Ewing's Sarcoma

- Ewing's sarcoma is believed to arise from endothelial cells in the bone marrow.
- ✤Incidence: peak at 10–15 years.
- Primary tumor: often diaphyses of long bones (particularly femur, tibia, fibula, and humerus) and bones of the pelvis.
- Metastasis: lungs, skeletal system, bone marrow

Ewing's Sarcoma

- The patient presents with pain often throbbing in character – and swelling. Generalized illness and pyrexia, together with a warm, tender swelling and a raised ESR, may suggest a diagnosis of osteomyelitis.
- ***DDx**: Osteomyelitis
- Diagnosis: Biopsy is Important
- Prognosis: The prognosis is always poor, and surgery alone does little to improve it.
- Treatment: Chemotherapy, surgery then radiotherapy

Multiple Myeloma / Plasmacytoma

- A malignant B-cell lymphoproliferative disorder of the bone marrow with plasma cell predominating.
- Results in bone marrow cell proliferation and increased osteoclastic activity which lead to osteoporosis and lytic lesions throughout the skeleton (myelomatosis).
- Plasmacytoma: is a large colony of plasma cells aggregates in one bone.
- ✤Typical patient → 45-65 years old with weakness, bone pain backache with or without pathological Fracture.
- Also, signs of hypercalcemia (thirst, polyuria and abdominal pain) plasma proteins abnormalities, increased blood viscosity and anemia
- Late secondary features are due to renal dysfunction and spinal cord or root compression caused by vertebral collapse.

Multiple Myeloma / Plasmacytoma

X-ray:

- Multiple "punched out" defects in the skull, pelvis and proximal femur ...'geographic map'
- Crushed vertebra
- \odot Osteocytes lesion in a large bone metaphysis
- Multiple myeloma is one of the commonest causes of osteoporosis and vertebral compression Fracture in men >45 y.

Investigations:

- \circ Mild anemia
- \odot High ESR
- \odot Bence-jones proteins in urine
- \odot Abnormal band in electrophoresis
- \odot Increased creatinine and calcium
- \odot Plasmacytosis with typical 'myeloma' cells in bone marrow puncture.

Most common immunoglobulin in MM: lgG or lgA

Secondary Malignant Tumors (Metastases)

Most Common Malignant bone tumor

Most appears as osteolytic lesions on x-ray except for prostate tumor...appears osteosclerotic

*****The commonest sites for bone metastases:

 Vertebrae, proximal femur, pelvis, the proximal half of the femur and the humerus

Most common tumors metastasize to bones:

○ Lung, Breast, Thyroid, Renal, Prostate

*****Bone resorption is due to:

 \odot Direct action of the tumor cells

 \odot Tumor derived factors that stimulate osteoclast

The commonest feature is pain

What is your spot diagnosis ?

- a. Chondroma
- b. Chondroblastoma
- c. Simple bone cyst
- d. Aneurysmal bone cyst
- e. Giant cell tumor

سنوات (3) || الخيارات من عندي

The predominant tissue in the lesion is

- a. Cartilage
- b. Fibrous
- c. Bone

سنوات (2)

What is the most probable diagnosis

- a. Osteosarcoma
- b. Chondrosarcoma
- c. Chondroblastoma
- d. Fibrous cortical defect
- e. Osteoid osteoma

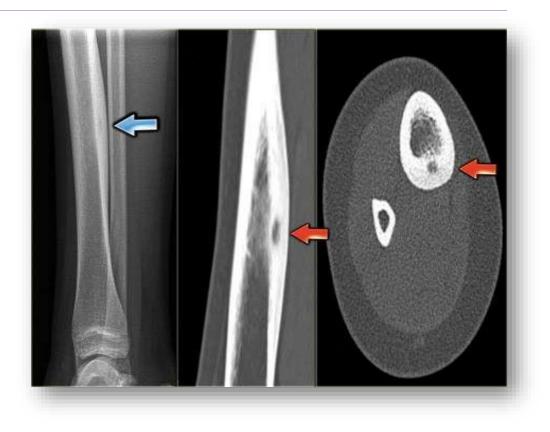
What is the diagnosis ?

- a. Osteoid osteoma
- b. Fibrous cortical defect
- c. Giant cell tumor
- d. Chondroblastoma
- e. Fibrous dysplesia

نوات (5)

What is your management ?

- a. Chemotherapy
- b. Excisional surgery
- c. Detailed history, physical examination, and follow up X rays
- d. Detailed history, physical examination, and biopsy
- e. Radiotherapy



The predominant tissue in the lesion is

- a. Cartilage
- b. Fibrous
- c. Bone

سنوات (1)

What is your diagnosis ?

- a. Simple bone cyst
- b. Chondroma
- c. Giant cell tumor
- d. Chondrosarcoma

*****How would you describe this lesion ?

 Eccentric, well-defined, metaphyseal lesion, no disruption to the cortex, mostly benign

What is your diagnosis ?

 \circ Non-ossifying fibroma

What is your management ?

 Conservative and follow up unless pathologically fractured

25 male patient come to your clinic suffer from pain

What is your diagnosis ?

 \circ Osteoid osteoma

Mention 2 features of pain

Relieved by NSAIDs
Exacerbated by alcohol
More severe at night

What is your management ?

 complete removal of the nidus or Radiofrequency ablation

Describe the following lesion

 Eccentric metaphysical well defined mostly benign

What is the most common benign DDx ?

ONON-OSSIFYING fibroma (NOF)

What is your management ?

 \circ Conservative

A case of index pain after repetitive fractures

What is your diagnosis ?

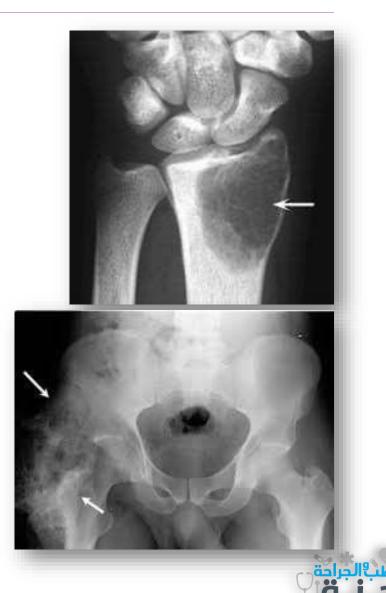
 \circ chondroma

What is your management ?

 \circ Curettage

What is your diagnosis ? fibrous dysplasia What associated hormonal abnormality ? Precocious puberty

What is your diagnosis ? • Giant cell tumor


What is your management ?

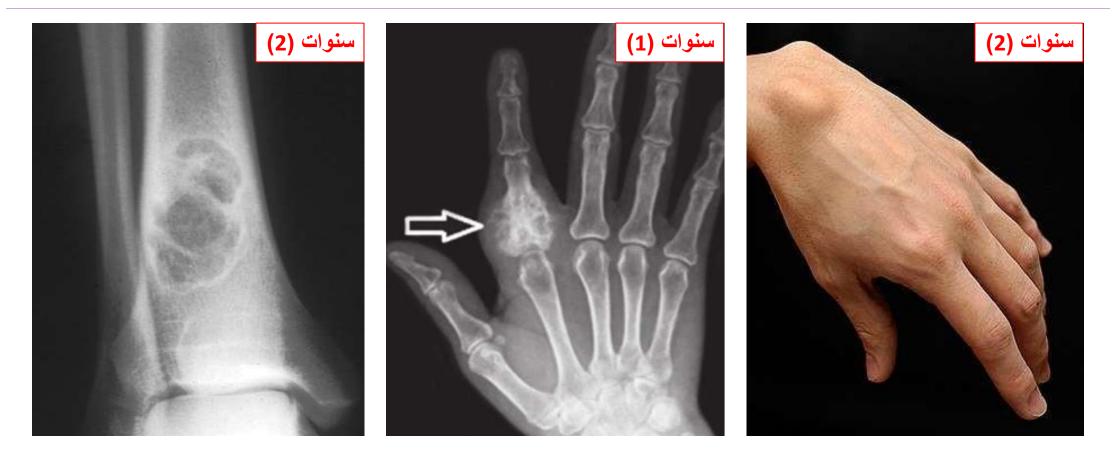
 $\odot \mbox{Curettage}$ and grafting

≻75 years old male complain of pain and decrease range of motion after acetabular fracture (caused by RTA)

What is your diagnosis ?

 $\odot\,\text{Heterotopic}$ ossification

What are the differential diagnoses ?


Giant cell tumorChondroblastoma

Mention two radiological features found in this x-ray

- 1.sun burst appearance
- 2.codman's triangle

What is your diagnosis for each ?

Non-ossifying fibroma

Chondrosarcoma

Ganglion cyst

