# Factors affecting mortality

- 1. Age structure: main determinant
- 2. Environment
- 3. Economic development
- 4. Technological advance
- 5. Medical services/science and development of public health

# Population health status comparison

- Crude death rate
- Age specific death rate
- Standarised death rate
- Standarised mortality ration (SMR)
- PYLL Index (Potential Years Life Lost)

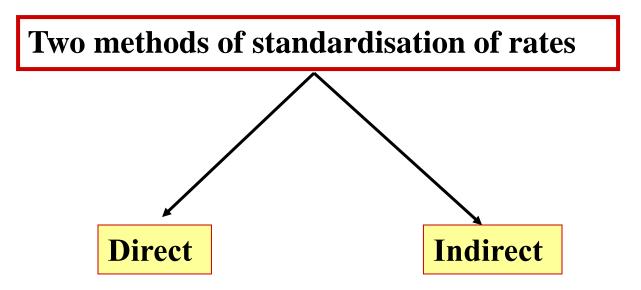
# Comparing disease and health event rates

- Disease and mortality rates can be used to compare:
  - disease/mortality rates between populations
    the same population over time.
- When comparing rates we should be aware of the characteristics of the population(s) that may affect the rates.
- The age and sex structure of two populations being examined may differ and these differences will affect the rates.

## **Standardisation of rates**

Crude rates do not allow comparison in Space (region or countries) or time

For example for death rates, the differences observed between two populations' crude death rates could only be due to the demographic differences between the population studied. A population with a higher proportion of elderly people will have a higher number of total death than a young population.


# Standardized mortality rate

### we know that:

□ death is closely related to age

- the age structure of the a some groups could be different to that of the total population
- Therefore we need to adjust for the effect of the age structure to make a meaningful comparison.
- This can be done using standardization

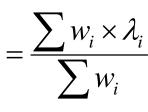
Standardisation of rates is a method of weighting the rates on one factor which has an influence on the rate, such as age or sex. Once the influence of that factor has been eliminated with the standardisation the rates can be compared.



## **Direct Standardisation**

- is used to compare large populations
- uses a standard reference population to compare both populations
- applies the age-specific disease/death rates of the population of interest to the standard population
- allows us to compare death rates, by calculating what their death rates would be if the populations of interest had the same age population structure as the reference population.

## **Direct standardisation**


Direct standardisation uses a standard *population demographic structure*.

- •one of the populations studied
- •or a combination of both.

The result obtained is an age standardised rate which would represent the rate in the study population if the age structure of that population was the same as the reference population. The standardised rates can then be compared, but this standardised rates <u>have no absolute meaning</u>, they are only meaningful in the context of the reference population used. Using a different reference population will give a different standardised rate.

## Calculation

# Age standardized rate = $\begin{pmatrix} \text{Overall rate in standard population if} \\ \text{the age - specific rates were the same} \\ \text{as those of the population of interest} \end{pmatrix} = \frac{\sum w_i \times \lambda_i}{\sum w_i}$



 $w_i$  are the weights  $\lambda_i$  rates

**This compares the death rates from heart diseases in 1966, between Puerto-Rico and the U.S.A.** The crude death rates shows a higher rate in the U.S.A - 368.46 per 100,000 as compared to 124.23 per 100,000 in Puerto\_Rico.

|       | populatio<br>n | Puerto Rico      |                           |            | USA              |                           |
|-------|----------------|------------------|---------------------------|------------|------------------|---------------------------|
| Age   |                | No. of<br>deaths | death rate<br>per 100,000 | population | No. of<br>deaths | death rate<br>per 100,000 |
| <15   | 1000600        | 34               | 3.40                      | 55786173   | 764              | 1.37                      |
| 15-24 | 458400         | 24               | 5.24                      | 24020004   | 875              | 3.64                      |
| 25-34 | 317000         | 34               | 10.73                     | 22818310   | 3500             | 15.34                     |
| 35-44 | 258300         | 73               | 28.26                     | 24081352   | 17868            | 74.20                     |
| 45-54 | 208100         | 214              | 102.84                    | 20485439   | 55580            | 271.31                    |
| 55-64 | 132300         | 447              | 337.87                    | 15572317   | 114780           | 737.08                    |
| 65-74 | 89000          | 753              | 846.07                    | 10996842   | 191348           | 1740.03                   |
| 75+   | 49300          | 1543             | 3129.82                   | 5562738    | 276021           | 4961.96                   |
|       | 2512000        | 3122             | 124.23                    | 170222175  | ((072(           | 268 46                    |
| total | 2513000        | 5122             | 124.23                    | 179323175  | 660736           | 368.46                    |

**This table shows the calculation of the age standardised mortality** rate from heart diseases in Puerto-Rico using the population of the U.S.A. as a reference.

|            | US         | Puerto Rico | Expected                     |
|------------|------------|-------------|------------------------------|
| •          | population | death rates | deaths<br>in U.S. population |
| Age<br><15 | 55786173   | 3.40        | 1895.59                      |
| 15-24      | 24020004   | 5.24        | 1257.59                      |
| 25-34      | 22818310   | 10.73       | 2447.39                      |
| 35-44      | 24081352   | 28.26       | 6805.80                      |
| 45-54      | 20485439   | 102.84      | 21066.24                     |
| 55-64      | 15572317   | 337.87      | 52613.95                     |
| 65-74      | 10996842   | 846.07      | 93040.70                     |
| 75+        | 5562738    | 3129.82     | 174103.54                    |
| total      | 179323175  |             | 353230.81                    |

age standardised rate = 353230.81/179,323,175\*100,000=196.98 per 100,000 per year.

#### Advantages

The direct method preserves consistency, between the populations being compared, i.e. if each agespecific rate in area A is greater than each of the corresponding age-specific rates in area B, then the directly standardised rate for area A will always be higher than that of area B of the irrespective standard population used. Consequently it is the preferred method for comparing a number of different populations against each other.

Directly standardised rates can readily be compared over time provided the same standard population is used.

#### Disadvantages

The direct method requires that the observed events in the subject population are available broken down by age. If this information is not available the directly standardised rate cannot be calculated.

For small subject populations the age-specific rates of the subject population are based on small numbers and consequently are unstable. Small changes in the number of deaths in a particular age band may result in large changes in the directly standardised rate.

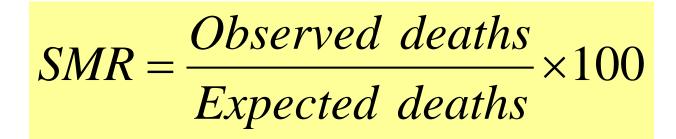
# Indirect standardization and SMRs

 allows valid comparisons between populations with different age and sex structures

 Adjusts for differences in age by calculating the number of deaths 'expected' in a population, based on its age structure, if it had the same mortality experience as a reference population.

### **Indirect standardisation**

The indirect method of standardisation is mostly used in the standardisation of mortality rates (although not exclusively). It involves the calculation of the *standardised mortality ratio* or S.M.R.


Indirect standardisation is easier to use

permit some statistical calculations of probability (95% confidence intervals).

The information necessary to calculate the S.M.R. is also often more easily available than for the direct method.

## **Indirect standardisation**

Useful in the presence of low death rate for example for younger age groups The principle of its calculation uses standard age specific rates in a reference population. It then calculates the number of deaths (or cases) expected in the study population if the age specific rates in this study population were the same as in the reference population. The ratio of the number of observed death (or cases) to the number of expected and multiplied by 100 is calculated



 $SMR = \frac{d}{\sum n_i R_i} \times 100$ 

d is the number of deaths in the study population, n<sub>i</sub> is the number of people in the i<sup>th</sup> group of the study population,

R<sub>i</sub> is the crude death rate in the i<sup>th</sup> group of the standard population.

Confidence interval for SMR The 95% CI for an SMR is obtained by CI=SMR±(1.96xSE) Where SE=SMR/ $\sqrt{d}$ d=number of observed deaths **The S.M.R.** is a **ratio**, it has no unit and can take any value between 0 and infinity.

**SMR =100** 

The study population has the same mortality rate as the reference population.

- SMR >100 The study population has a mortality higher than the reference population.
- e.g. SMR=120 means that the mortality in the study population is 20% higher than in the reference population
  - **SMR <100**

The study population has a mortality lower than the reference population.

e.g. SMR=50 means that the mortality in the study population is 50% less than in the reference population.

### Example

Calculation of standardised mortality ratio (S.M.R.) for two occupational groups in England using the whole population of England as a reference population (Original data 1959-63)

| Occupation                          | Number in<br>Occupational<br>group | Observed<br>death | Crude death<br>rate<br>per 1000 per<br>year |
|-------------------------------------|------------------------------------|-------------------|---------------------------------------------|
| Farmers, foresters<br>and fishermen | 705910                             | 20973             | 5.9                                         |
| Armed force                         | 301120                             | 4282              | 2.8                                         |

# Calculation of expected number of deaths using the age specific death rates of England as a reference

|                                           | Annual<br>death rates/<br>1000 in<br>England             | Farmers, foresters,<br>fisher men              |                                               | Armed Force                               |                                           |
|-------------------------------------------|----------------------------------------------------------|------------------------------------------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|
| Age                                       |                                                          | Number<br>in<br>occupatio<br>n                 | Expected<br>deaths<br>1959-1963               | Number in<br>occupation                   | Expected<br>deaths 1959-<br>1963          |
| 15-24<br>25-34<br>35-44<br>45-54<br>55-64 | 5.139715<br>5.589847<br>12.05491<br>35.36006<br>108.5502 | 134560<br>124100<br>132220<br>160110<br>154920 | 691.6<br>693.7<br>1593.9<br>5661.5<br>16816.6 | 165030<br>73240<br>42250<br>15930<br>4670 | 848.3<br>409.4<br>509.3<br>563.3<br>506.9 |
| Total expected deaths                     |                                                          | 25457.3                                        |                                               | 2837.2                                    |                                           |

**Calculation of S.M.R.** 

### Farmers, foresters and fishermen:

SMR=20973/25457.3\*100=82.4

**Armed forces** 

SMR=4282/2837.2\*100=150.9

## Conclusions

The SMR of the Farmers etc is lower than the one of the Armed force.

The SMR of the farmers etc is less than 100

The SMR of the armed force is more than 100

The mortality rate of the farmers is lower than the average for England by 17.6%. The mortality of the armed force is higher than the average in England by 50.9%.

**Advantages and disadvantages of indirect age standardisation** 

#### Advantages

The indirect method requires only the total number of observed events in the subject population and may therefore be used in some situations where the direct method cannot.

Indirect standardisation is more stable as it minimises the variance, giving a smaller standard error and narrower confidence intervals than the direct method. It is therefore more appropriate when dealing with the statistical significance of small populations

#### Disadvantages

Indirect standardisation does not necessarily preserve consistency between the populations being compared, and in extreme situations may give misleading results.

Indirectly standardised ratios for areas A and B may be compared to the standard but should only be directly compared to each other if the age structures of areas A and B are similar to the standard, or if the ratio of their age-specific mortality rates to that of the standard is

consistent across the age groups.

Indirect standardisation can be used for comparisons over time, but only by freezing the standard rates at a fixed point in time. This is often felt to be less than intuitive. The validity of the comparisons is subject to the

### The choice of standard population

Whether indirect or direct methods are used, there are some general principles for choosing a standard population:

- 1. Always choose a standard population *similar* to the study populations. For example, if the units of interest are all the local authorities in a country, then use the national population; if the units of interest are two wards in a local authority, then the local authority population or the average of the two wards may be appropriate.
- 2. Do not standardise the study populations to different standard populations.
- 3. Examine the age structures of the study populations as well as the standard population. If the study age structures differ widely from each other and from the proposed standard, then indirect standardisation will generate misleading results.