<u>Cell Bio</u> Introduction to stem cell

Stem cells have the potential to change life as we know it

What is a stem cell?

"Any time you have healed after an injury it's a stem cell mediated event"

unprogrammed cells that are:

- Capable of dividing and renewing themselves for long periods of time i.e. <u>Proliferation</u>
- Have the potential to give rise to specialized cell types i.e. <u>Differentiate</u>
- Stem cell is unique because it <u>Can do both</u>:

Self-renewDifferentiateMake copies of itselfMake other types of cells
(specialized cells of the body)

Why self renew & Why differentiate?

<u>A- Self renewal</u>

- Because if they didn't copy themselves, they would <u>finish</u> quickly.
- It is important for the body to maintain a storage of stem cells to use throughout your life.

B- Differentiation

- Specialized cells are <u>mature cells</u> cannot divide or make copies of themselves, so if they damage or die they need to be replaced so the body can keep on working
- Specialized' or 'differentiated' cells have particular roles
 (Functions) in the body e.g. blood cells, nerve cells, muscle cells

• There are 2 theories for stem cell division:

1- Obligate asymmetric stem cell replication

2- Stochastic differentiation

progenitor (intermediate) cells: Cells that are at a stage between stem cells and mature specialized cells.

they are yet not fully programmed, somehow more mature than a stem cells.

They have less capacity to self-renew themselves than a stem cells

Potency: stem Cell's ability to differentiate into other cell types

2- Stochastic differentiation

If one stem cell differentiate into 2 specialized cells another stem cell will notice that and make up for the lost stem cell and divide by mitosis to produce 2 identical stem cells

Types of stem cells

There are 2 types of stem cells:

- 1. Embryonic stem cells (ES)
- 2. Tissue (adult /somatic) stem cells (TS)

Embryonic stem cells

Exist only briefly in early development before tissues begin to form. Found in the inner cell mass of <u>blastocyst</u> (a very early stage of the embryo life that has about 50 to 100 cells)

Tissue (adult /somatic)stem cells

Small populations of cells that are found in the tissues of the body after the tissues are formed (in a fetus, baby, child or adult)they give rise to a limited number of mature cell types that build the tissue in which they reside..

1- Embryonic stem cells (ES)

- Embryonic stem (ES) cells derived from the <u>inner cell mass of a</u> <u>blastocyst</u> (an early- stage embryo)
- Human embryos reach the blastocyst
 stage 4-5 days post fertilization (consists of 50–150 cells) it is the stage at which implantation on the wall of the uterus occurs

- ES of the inner cell mass are pluripotent.
 (Pluripotent: can give rise to all of the cell types that make the body)
- Few weeks later the cells will organize into <u>3 primary cell layers</u>
 <u>→ germinal layers</u>: (ectoderm, mesoderm, endoderm). cells
 are <u>No more pluripotent</u>. As development continue the cells of
 that layers will differentiate to form > 200 types of cells that
 form the body
 Prof. Dr. Hala Elmazar
 10

Embryonic stem cel

ES cells don't contribute to the extra-embryonic

membranes or placenta Dr. Hala Elmazar

The 3 primary cell layers are formed in the earliest stages of the embryonic development

- The cells in each germ layer differentiate into tissues and organs
- Ectoderm \rightarrow skin, nervous system, & parts of head & neck
- Mesoderm → muscles, blood, blood vessels, & begging of bone & connective tissue
- Endoderm→ digestive ,respiratory tracts, pancreas &liver

Embryonic stem cell research

- **ES cells** offer hope for new therapies, but their use in research has been **<u>strongly debated</u>** because:
- 1. Destruction of embryo
- 2. Rejection due to different genetic background
- 3. Changed into tumor cells. Once they put in the body they can never be taken out

- Stem cells is surrounded by a special microenvironment called the stem cell niche. <u>Niches</u> consist of a multiple factors that can influence stem cell behavior.
- Any human ES cell is defined by the expression of several transcription factors on its cell surface
- The transcription factors

 Oct-4, Nanog, Sox 2, max,
 Smad 1, FoxC2
 (Proteins that control rate of

 Transcription of genetic information)

 These factors control the expression of genes that either maintain ES pluripotency or induce ES differentiation into progenitors of 3 germ layers Prof. Dr. Hala Elmazar

2- Tissue (adult/somatic) stem cells

- Undifferentiated cells, found among the differentiated cells in the tissues & organs. Used as internal repair system, regenerating to replace lost or damaged cells for the life of a person.
- They are small in number, have restricted ability to self- renew itself & to differentiate into various types of cells
- Its origin in mature tissue is unknown
- They differentiate only to specialized cells similar to cells of the tissue in which they are found
- They are <u>multipotent</u>

 Adult stem cells has been successfully used in Therapy for many years to treat leukemia and related bone/blood cancers through bone marrow transplants.

 The use of <u>adult stem cells</u> in research & therapy is not as controversial as the use of <u>ES cells</u>, because the production of adult stem cells does not require the destruction of an embryo

- Adult stem cells exist throughout the body from The time an embryo develops
- Adult stem cells replace cells that are damaged or used up.

The bone marrow contains at least two kinds of stem cells:

A- One is called <u>hematopoietic stem cells</u>, forms all the types of blood cells in the body.

B- The second is called <u>Mesenchymal stem cells</u> (bone marrow stromal cells) that generates bone, cartilage, fat, and fibrous connective tissue cells.

 Stem cells are thought to <u>reside in a specific areas of</u> <u>each tissue</u> where they may <u>remain quiescent</u> (nondividing) for many years until they are activated by <u>signals</u> e.g. disease or tissue injury.

Cord blood stem cells

- Umbilical cord blood was once discarded as waste material but is now known to be a useful source of blood stem cells.
- After a baby is born, cord blood in the umbilical cord & placenta is relatively easy to collect it contains
 <u>Hematopoietic (blood) stem cells</u> (will give rise to red cells, white cells, platelets, & lymphocytes)
- is used to reconstruct bone marrow following radiation treatment in various blood cancers, and for various forms of anemia

Induced pluripotent stem cells (iPSC)

- iPSC technology is a huge discovery (2006) \rightarrow NP 2012
- <u>Concept</u>: mature cells can be reprogrammed to become pluripotent.
- <u>Technique</u>: done by introduce a few <u>specific pluripotency</u> <u>genes</u> into already specialized cells (Ex: ms cells) → the cells will forget what type of cells they are & revert back & reprogrammed back into pluripotent stem cell
- <u>Goal</u>: <u>regenerative medicine</u> To replace damage tissue in a given person by using pluripotent stem cells from his own body, not only the patient will <u>get the new tissue</u> he needs but also with <u>NO any immune- rejection</u> <u>complication</u>

Induced pluripotent stem cells (iPSC)

Prof. Dr. Hala E

1st isolate and culture skin cells from a patient.

2nd introduce three or four pluripotency genes into the skin cells by using an engineered virus carrier.

The expression of these genes regenerates the stem cell phenotype.

The viruses simply deliver the genes of interest and are themselves engineered not to be harmful.

Committed progenitor cells

- They are early descendants of stem cells but they are more specific than stem cells
- Each progenitor cell is only capable of differentiating into cells that belong to the same tissue or organ.

- The most important difference between stem cells and progenitor cells is that:
- They are already more specific than stem cells
- can only be pushed to differentiate into its "target" cell
- they can divide only for limited number of times

Committed progenitor cells

main marrow cell lines: erythroid, granulocytic and monocytic, megakaryocytic, and lymphocytic, Dr. Hala Elmazar

- Genetic & environmental factors determine the pathway of differentiation that the progenitor cells will take it to form a specific linage. They remain <u>dormant</u> in the tissue till need.
- Adult stem cells main role is to replace cells in case of tissue injury, damage or dead cells
- Example of adult stem cells:
- ✓ <u>Satellite cells</u> found in muscle → myogenic progenitor cells → skeletal muscle cells (Myofibers)
- ✓ <u>Periosteum</u> contains progenitor cells that develop into osteoblasts.

Potency:Cell's ability to differentiate into other celltypes

Totipotent:can give rise to an entire functional organism{cells from early embryo (1-3 days)}

<u>Pluripotent:</u> can give rise to all types of specialized

cells in the body (ESC: 5- 14 days) (form > 200 cell types)

Multipotent: can give rise to multiple types of specialized cells, but not all cell types

(Adult SC in tissues & hematopoietic SC in cord blood)

Oligopotent:can differentiate into few cell typese.g. lymphoid or myeloid stem cells

Unipotent:can give rise to only one type of cells.e.g.B-lymphocyte \rightarrow plasma cellsMonocyte \rightarrow macrophagesNullipotent:Terminal cells

Myeloid and lymphoid stem cells

Cloning

- The process of producing a population of genetically identical individuals (exact genetic copies)
- There are 2 types:
 <u>Reproductive cloning:</u>
- Hit the headlines in the late 1990s when 'Dolly the sheep' was cloned.

> It was the first mammal ever to be cloned.

Molecular cloning:

A technique used to help scientists investigate what particular genes do and how they work.

Cloning

There are two <u>VERY different</u> types of cloning:

Reproductive cloning

- Use to make two identical individuals
- Very difficult to do
- Illegal to be done on humans

- Use to study what a gene does
- Routine in the biology labs

Reproductive cloning

To make Dolly, scientists done what so called <u>somatic</u> <u>cell nuclear transfer (SCNT)</u>

Somatic cell: somatic cell is any cell in the body <u>other</u> <u>than</u> sperm & egg. Somatic cell has the 2 complete sets of chromosomes (46 = 23pairs)

Nuclear : nucleus holds DNA which contains all the information needed to form an organism

Transfer: moving an object from one place to another

Technique

- They took the nucleus out of a normal somatic cell from a sheep (original).
- They put that nucleus into an egg cell of another sheep that had no nucleus.
- They then had a new cell.
- To make the new cell start to divide and grow, they gave it an electric shock.

- Then it started to divide and develop into an embryo.
 When it had grown into a very early stage embryo called a blastocyst
- it then was implanted into the womb of another sheep so that it could grow into a lamb and be born.
- The new sheep is a clone of the sheep that donated the somatic cell. Both sheep have the same DNA

Reproductive cloning

Molecular cloning

- A process used by scientists to make copies of a specific gene or genes.
- Isolation of a DNA sequence (gene) from any species, and its insertion into a vector for propagation, without alteration of the original DNA sequence of the vector
- Also called **recombinant DNA cloning**

Recombinant DNA

DNA molecules formed by <u>laboratory methods</u> of genetic recombination to bring together genetic material from multiple sources \rightarrow creating new DNA sequences

•Recombinant DNA is possible because DNA molecules from all organisms share the same chemical structure (the genetic code is universal) .

•Construction of recombinant DNA, involves insertion of a foreign DNA fragment into a plasmid vector.

- **Cloning vector**: A cloning vector is a small piece of DNA (taken from a virus, a plasmid) into which a foreign DNA fragment (insert) can be inserted for cloning purposes
- Ligation of inserts into an appropriate cloning vector, will create recombinant molecules (e.g., plasmids)

 Plasmid: circular double stranded DNA molecule within a bacterial cell (physically separated from chromosomal DNA) can replicate independently

- The different types of vectors available for cloning are :
- plasmids
- viruses
- bacteriophages,
- bacterial artificial chromosomes (BACs),
- yeast artificial chromosomes (YACs)
- mammalian artificial chromosomes (MACs).
- The cloning vector is chosen according to the size and type of DNA to be cloned
- Cloning vector is used as a vehicle to artificially carry foreign genetic material into another cell, where it can be replicated and expressed
- Without Cloning Vector, Molecular Gene Cloning is
- What are the 3 main components of a cloning vector
- Unique restriction endonuclease (RE) sites.
- > transmissibility.
- Promoters for gene expression.

Technique

- 1- Select the DNA molecule to be cloned (insert)
- 2- Select DNA molecule that will serve as a vector (virus /plasmid)
- 3- cleave the vector DNA strand with <u>Restriction endonuclease</u>, then insert foreign DNA \rightarrow recombinant DNA molecule
- 4- Introduction of recombinant DNA in host cells \rightarrow transformation
- 5- When the cell divides, it makes copies of itself. Each new daughter cell contains an exact copy of the new DNA (cloned DNA)
- 6- Selection & screening of colonies with desired DNA

Applications of molecular cloning:

1- Insulin production: we use the bacteria to be human insulin factories

<u>Why bacteria</u>?

- Contain plasmids
- Are unicellular and reproduce asexually \rightarrow quick clones

2- Study genome organization and gene expression

A- Loss of function (gene knockout):

A genetic technique in which a gene is removed or blocked so that *it does not work*, used in learning about a gene that has been sequenced but has an unknown or incompletely known function

<u>**B- Transgenic organisms</u>**:generating genetically modified organisms (GMOs), most GMOs are generated for purposes of basic biological research e.g. transgenic mouse</u>

<u>**C- Gene therapy:**</u> involves supplying a functional gene to cells lacking that function, with the aim of correcting a genetic disorder or acquired disease

