

Determination of Optimum Conditions for α- Amylase Enzyme Activity

Dr. Nesrin Mwafi Biochemistry & Molecular Biology Department Faculty of Medicine, Mutah University

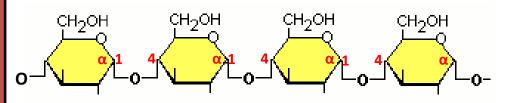
Effect of Temperature and pH

Procedure:

You will be provided with 0.1 U/ml of α -amylase. Prepare the following tubes:

Component	1 (-ve)	2 (+ve)	3	4	5	6	7 (-20°C)	8 (boiling)
Starch (1%)	2 drops	2 drops						
Distilled H ₂ O	2 ml	1 mL					1 ml	1 ml
α-amylase		1 mL	1 ml					
Buffer, pH 4.2			1 ml					
Buffer, pH 7.2				1 ml				
Buffer, pH 10.2					1 ml			
HCI (1N)						1 ml		

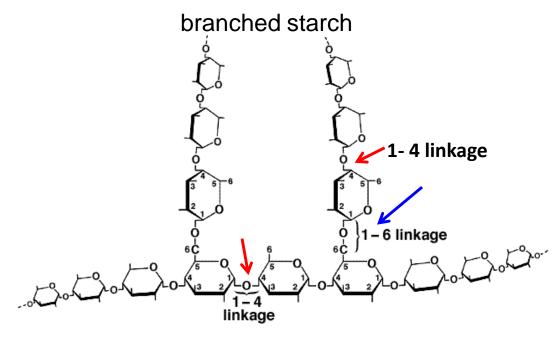
Optimum conditions: pH= 5.6-6.9, **37** °C (body temperature)

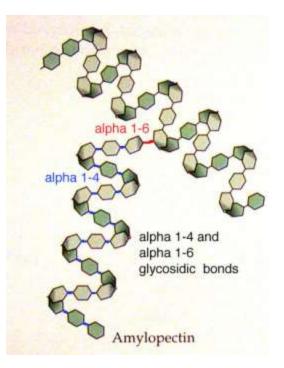

Storage Polysaccharides


Starch: is the storage polysaccharides in plants.

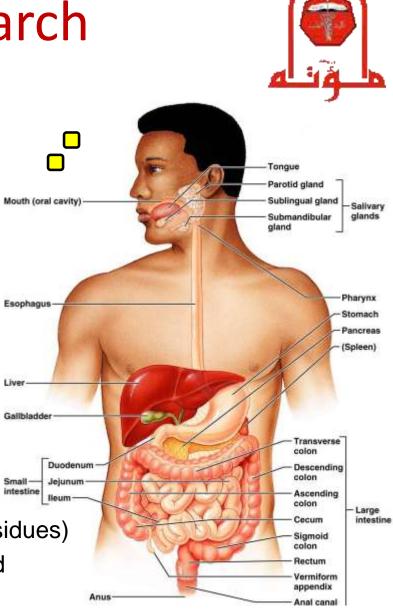
- Polymer composed of glucose monomers
- a mixture of amylose (20%, water soluble) and amylopectin (80%, water insoluble) stored in plant cells as insoluble granules.

unbranched starch(linear)


Amylose : α (1 \rightarrow 4) glycosidic bonds


The helical structure of amylose

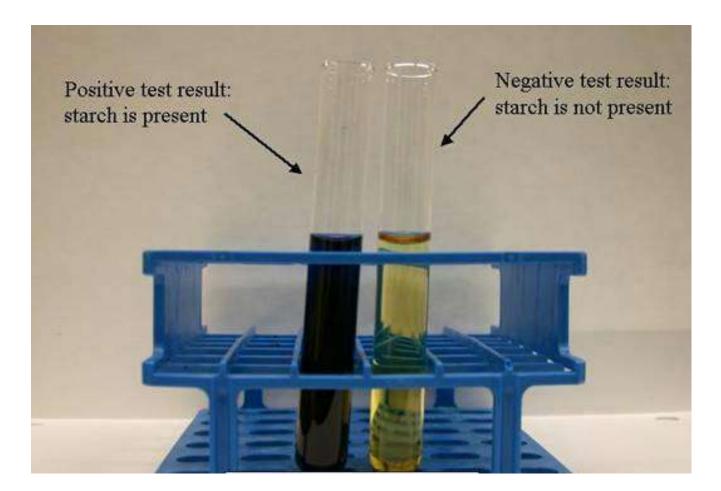
Storage Polysaccharides



Amylopectin: α (1 \rightarrow 4) glycosidic bonds with α (1 \rightarrow 6) branch points (every 24-30 units)

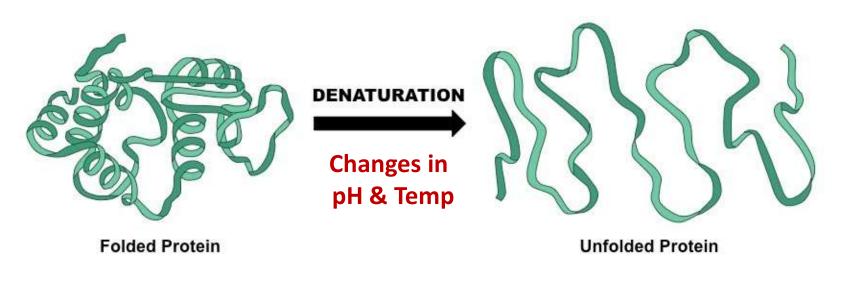
Digestion of starch

- 1. The salivary amylase enzyme randomly hydrolyses the α -(1 \rightarrow 4) bonds
- Starch digestion to small oligosaccharides continues in the small intestine by pancreatic amylase
- Further hydrolysis by α-glucosidase (which remove one glucose residue at time) and by a debranching enzyme (which hydrolyzes specifically α-[1→ 6] bond
- The produced monosaccharides (glucose residues) are absorbed by the intestine and transported to the bloodstream


Iodine Test

Iodine Test

α- Amylase Enzyme



- α -Amylase enzyme catalyzes the breakdown of starch to simple sugars
- lodine test is used to track the digestion of starch by α amylase enzyme
- Positive iodine test indicates the presence of starch (inactive enzyme)
- Negative iodine test indicates that the enzyme is active and degraded the starch to smaller units
- Boiling has irreversible effect on enzyme activity because high temperature causes denaturation of proteins (boiling destroys the bonds and harms the three-dimensional structure of the enzyme.
- Freezing has reversible effect on enzyme activity (inactivation of enzymes)

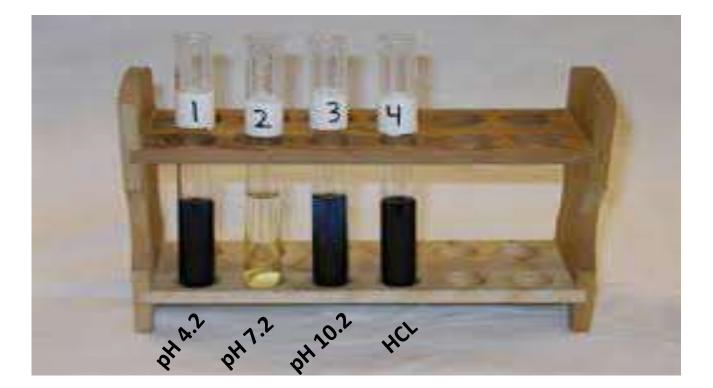
α- Amylase Enzyme

• Strong acids destroy the enzymes and breakdown the structure (denaturation)

Loss of biological activity

Effect of Temperature and pH

Procedure:


You will be provided with 0.1 U/ml of α -amylase. Prepare the following tubes:

Component	1 (-ve)	2 (+ve)	3	4	5	6	7 (-20°C)	8 (boiling)
Starch (1%)	2 drops	2 drops						
Distilled H ₂ O	2 ml	1 mL					1 ml	1 ml
α-amylase		1 mL	1 ml					
Buffer, pH 4.2			1 ml					
Buffer, pH 7.2				1 ml				
Buffer, pH 10.2					1 ml			
HCI (1N)						1 ml		

Optimum conditions: pH= 5.6-6.9, **37** °C (body temperature)

α- Amylase Enzyme

