

15- Pathophysiology of Shock

By Prof. Sherif W. Mansour

Physiology dpt., Mutah school of Medicine.

Shock

Definition: Circulatory shock means inadequate tissue perfusion with blood due to decreased CO & ABP.

ETIOLOGY AND PATHOGENESIS OF SHOCK

2

-Types and causes of shock:

(I)Low-resistance shock: (primary shock) (Normo-volumic shock): It is caused by severe VD (bl. volume is normal) - e.g.:

(1) Neurogenic shock:

Sever emotions (vago-vagal syncope) \rightarrow vaso& venodilatation of skeletal blood vessels & bradycardia $\rightarrow \downarrow$ ABP and shock.

(2) Anaphylactic shock:

Due to exaggerated antigen-antibody reaction with release of histamine or kinin causing vasodilation with drop in blood pressure.

(3) Septic shock:

Severe infection \rightarrow bacterial endotoxin \rightarrow depress the vasomotor center with resulted VD of arterioles and capillaries \rightarrow \uparrow capillary permeability \rightarrow \downarrow blood pressure \rightarrow shock

(II) Hypovolemic shock: (Secondary shock) (Cold shock)

Caused by loss of blood or plasma or extracellular fluid. e.g.

- (1)Post-haemorrhagic shock with failure of compensatory mechanisms.
- (2) Burn shock: loss of plasma (Exeamia) & VD.
- (3)Traumatic shock: Haemorrhage, pain, loss of plasma to tissue.
- (4) Dehydration: severe vomiting, diarrhea or sweating.

(III) Cardiogenic shock:

As in infarction, heart failure or arrhythmia $\rightarrow \downarrow CO \rightarrow$ shock. (IV) *Obstructive shock*:

due to obstruction of the blood flow at the centers of circulation which hinders blood flow to tissue: -In the **lung**: as in cases of the pulmonary embolism, thrombosis, and tension pneumothorax with marked elevation of the intrathoracic pressure.

-In the **heart** : as in cardiac tamponade (massive pericardial effusion) with fibrosis which prevent cardiac filling and contraction.

Classification of Shock

-Prognosis of shock:

Its severity depends largely on the degree and rate of blood pressure drop and it may be either:

(A) Reversible (compensated) shock:

The compensatory mechanisms (immediate and delayed) gradually restore the ABP up to normal level in negative feedback control.

(B) Irreversible (Refractory or decompensated) shock:

This occurs in severe causes of shock and the patient not be treated for about 3-5 hours \rightarrow progressive decrease in cardiac output and ABP in a +ve feed back mechanisms.

*Mechanisms that lead to death in refractory shock:

(1) Cardiac depression:

• Severe decrease in ABP \rightarrow coronary blood flow \rightarrow myocardial ischemia \rightarrow cardiac contraction \rightarrow COP \rightarrow ABP and so on \rightarrow myocardial infarction.

• Cardiac depression by myocardial toxic factor or other bacterial toxins released during shock.

(2) Cerebral depression:

Severe decrease in ABP → cerebral bl. flow → depression of vasomotor center → no correction of decreased ABP → more decrease in ABP & so on → cerebral damage.
(3) Dilatation of precapillary sphincter:

• After haemorrhage \rightarrow reflex sympathetic spasm of precapillary sphincters and venules especially in splanchnic area, after that dilatation of precapillary sphincter occurs by metabolites or toxins but venules remaining constricted $\rightarrow \downarrow VR \rightarrow$ more decrease in bl. pr \rightarrow more spasm of venules \rightarrow more $\downarrow VR$.

• \uparrow Capillary filtration \rightarrow \uparrow loss of plasma in tissue space $\rightarrow \downarrow$ bl. volume $\rightarrow \downarrow VR \rightarrow \downarrow$ COP \rightarrow ischemia of the capillary wall \rightarrow more filtration.

9

(4) Release of toxins by ischemic tissues:

• Myocardial toxic factor:

Extreme pancreatic ischemia \rightarrow trypsin enzyme is released from pancreas \rightarrow degeneration of pancreatic tissue \rightarrow release of myocardial toxic factor \rightarrow direct depression of the heart contractility.

•Endotoxin: released from intestinal bacteria under ischemia \rightarrow absorbed to bl. \rightarrow severe VD and cardiac depression \rightarrow severe shock.

•Free radicals: $\downarrow \text{COP} \rightarrow \text{tissue hypoxia} \rightarrow \text{injury of vessels} \rightarrow \text{adherence of granulocytes to vessels} \rightarrow \text{free radicals which causes more damage of vessels and more adherence of granulocytes and more free radicals and so on.}$

(5)*Thrombosis of small vessels:* due to sluggish circulation with activation of clotting factors and platelet aggregation. This leads to more tissue ischaemia.

- (6) Acidosis: \downarrow O2 supply \rightarrow lactic acid accumulation also \uparrow CO2 \rightarrow H2CO3.
- This acidosis leads to tissue damage and activation of intracellular proteolytic enzymes with auto-destruction.
- (7) Acute respiratory failure: due to damage of capillary endothelium and alveolar epithelium in the lung with release of cytokines.
- (8) Acute renal failure: due to:
- -Severe renal vasoconstriction causes renal ischaemia and tubular necrosis.
- -Muscular tissue damage leading to accumulation of **myoglobin** which enhance the damage in the kidney tissue with **decrease renal plasma flow** and **glomerular filtration rate** and the renal functions are severly impaired with uraemia and anurea.
- * Treatment of shock: Treatment of the cause......
- 1) Warming the body (in hypovolemic shock) and raising the lower limb by 30 cm $\rightarrow \uparrow$ VR.
- 2) O2 therapy and glucose injection.
- 3) Keep open air way and guard against pneumonia
- 4) Low resistance shock is treated by: Corticosteroids, Anti-histamincs, sympathomimetics.

Thank You