Solutions

A solution is a homogeneous mixture of at least two substances (one is called a solute and the other is called a solvent)

Solutes and solvents can be gases, liquids or solids
eg: NaCl solution, Sugar solution
$\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$

Molarity = number of moles / Volume in Litre

 Number of moles = mass (gm) / molar mass
Example:
 Prepare 1 liter of $1.00 \mathbf{M ~ N a C l}$ solution.

First calculate the molar mass of NaCl which is the mass of a mole of Na plus the mass of a mole of Cl or $22.99+35.45=58.44 \mathrm{~g} / \mathrm{mol}$

Molarity $=$ number of moles/ volume (L) Number of moles $=$ molarity X Volume $=1 \mathrm{X} 1=1$ Number of moles $=$ mass/ molar mass

Mass = molar mass X number of moles
Mass $=58.44 \mathrm{X} 1=58.44 \mathrm{gm}$
Weigh out 58.44 g NaCl .
Place the NaCl in a 1 liter volumetric flask

Add a small volume of distilled, deionized water to dissolve the salt. Fill the flask upto the 1 L line.

Normality = Molarity * n n is number of $\mathrm{H}+$ or $\mathrm{OH}-$

eg: for 1 M HCl solution the normality of this solution is equal to 1
$\mathrm{HCl} \rightarrow \mathrm{H}++\mathrm{Cl}-$
For 1M solution of H 2 SO the normality of this solution is equal to 2 $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathbf{2 H}+\mathrm{SO}_{4}{ }^{-2}$

For 3 N solution of H2SO4, the Molarity of this solution is equal to ?
Normality = Molarity * n in this case \mathbf{n} is equal to 2
$3=M$ * $2 \quad M=3 / 2=1.5$

For 6 M solution of $\mathrm{Al}(\mathrm{OH}) 3$, the Normality of this solution is equal to ?
Normality = Molarity * n in this case n is equal to 3

$$
N=6 \text { * } 3=18
$$

Dilution Formula

C1 V1 = C2 V2
C1 is the initial concentration V1 is the initial volume

C2 is the final concentration V 2 is the final volume

Example:

A laboratory procedure calls for 250 ml of an approximately 0.10 M solution of NH_{3}. Describe how you would prepare this solution using a stock solution of concentrated NH_{3} (14.8 M).

Substituting known volumes in equation
C1 V1 = C2 V2
$114.8 \mathrm{M} \times V_{1}=0.10 \mathrm{M} \times 250 \mathrm{~mL}$
and solving for V_{1} gives 1.7 mL .
Since we are making a solution that is approximately $0.10 \mathrm{M} \mathrm{NH}_{3}$ we can use a micropippette to measure the 1.7 mL of concentrated NH_{3}, transfer the NH_{3} to a volumetric flask (250 ml), and add sufficient water to give a total volume of approximately 250 mL .

BUFFERS

A buffer is a solution that resist the change in pH , a buffer can be a weak acid and its conjugate base (or a weak base with its conjugate acid). The weak acid is able to donate H^{+}ions to neutralize incoming basic ions while the conjugate base is able to accept \mathbf{H}^{+}.

Practically a buffer is prepared from mixing weak acid and its strong salt, example:

$\mathrm{CH}_{3} \mathrm{COOH} \leftarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\quad \mathrm{H}^{+}$
Acetic acid Acetate ion
Hydrogen ion (weak acid)
$\underset{\substack{\text { Sodium acetate } \\ \text { (salt) }}}{\mathrm{CH}_{3} \mathrm{COONa}^{\text {SOM }}} \underset{\text { Acetate ion }}{\mathrm{CH}_{3} \mathrm{COO}^{-}} \quad+\underset{\text { Sodium ion }}{\mathrm{Na}^{+}}$

The pH scale is a logarithmic scale representing the concentration of H^{+}ions in a solution which equal the negative log of the H^{+}ions concentration.
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=10-7 \mathrm{~mol} / \mathrm{L}$ neutral solution $\mathrm{pH}=7$
$\left[\mathrm{H}^{+}\right]>10-7 \mathrm{~mol} / \mathrm{L}$ acidic solution $\mathrm{pH}<7$
$\left[\mathrm{H}^{+}\right]<10-7 \mathrm{~mol} / \mathrm{L}$ basic solution $\mathrm{pH}>7$

The pH of a buffer solution can be determined using the Henderson-Hasselbalch equation.

$\mathrm{pH}=\mathrm{pKa}+\log [\mathrm{A}-] /[\mathrm{HA}]$

Ka : dissociation constant for the weak acid pKa (- $\log \mathrm{Ka}$) for weak acid.
[HA] = concentration of the buffer weak acid
[A-] = concentration of conjugate base for the buffer weak acid.

pH test strips

Type of buffers

1-Synthetic: Can be prepared in the lab.

2.Physiological buffers (natural) :

The main physiological buffers are the bicarbonate, proteins (example haemoglobin), and the phosphate buffers .

Bicarbonate buffer

This is the most important buffer in blood . It is made from equilibrium between carbonic acid and its conjugate base bicarbonate.

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \quad \ldots \quad \leftrightarrow \quad \ldots \mathrm{HCO}_{3}^{-} \ldots+\mathrm{H}_{+}
$$

Carbonic acid
bicarbonate ion

Phosphate buffer

The phosphate buffer consists of dihydrogen phosphate ion ($\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$) in equilibrium with monohydrogen phosphate ion $\left(\mathrm{HPO}_{4}{ }^{2-}\right)$ and H_{+}
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \quad \leftrightarrow \quad \mathrm{H}+\quad+\mathrm{HPO}_{4}{ }^{2-}$
(weak acid)
(conjugate base)
The weak acid, $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$, and its conjugate base, $\mathrm{HPO}_{4}{ }^{2-}$, are in equilibrium

