Patho - RS

Atelectasis

- ▼ Atelectasis (Collapse)
 - Inadequate expansion of air spaces → loss of lung volume → shunting of blood to veins →
 V/Q imbalance → hypoxia
 - Should be treated quickly to prevent hypoxemia and superimposed infection
 - ▼ 1) Resorption atelectasis (Obstruction → air can't reach distal airways)
 - Most common causes
 - 1. Obstruction of a bronchus
 - 2. Postoperatively due to intrabronchial mucous or mucopurulent plugs
 - 3. Foreign body aspiration
 - 4. Bronchial asthma, bronchiectasis, chronic bronchitis, intrabronchial tumor
 - ▼ 2) Compression atelectasis (accumulation of fluid blood, blood, or air in pleural cavity)
 - Frequent causes:
 - 1. Pleural effusion due to congestive heart failure
 - 2. Pneumothorax
 - (at the base) Failure to breath deeply in bedridden patients, in patients with ascites and during and after surgery
 - ▼ 3) Contraction atelectasis (Cicatrization atelectasis)
 - Caused by local or diffuse fibrosis (affecting lung or pleura) → decrease lung expansion
 - · Only irreversible form of atelectasis

Thromboemmolism 1

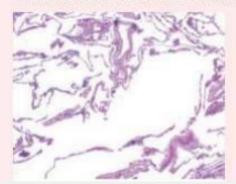
- ▼ Pulmonary thromboembolism
 - Blood clots in lung are almost always embolic
 - 95% of emboli are from thrombi within large deep veins of legs (involving popliteal vein and larger veins above)
 - Risk factors for deep vein thrombosis DVT
 - Prolonged bed rest (immobilized legs)
 - Surgery (<orthopedic surgery on knee or hip)
 - Sever trauma (e.g. burns or multiple fractures
 - Congestive heart failure
 - High estrogen in women (Period around childbirth and oral contraception)
 - Disseminated cancer
 - Primary disorders of hypercoagulability (factor V Leiden)
 - Prognosis of pulmonary thromboembolism depend on 1. size of embolus → size of artery occluded 2. cardiopulmonary status
 - · Consequences of pulmonary artery occlusion:
 - Increase in pulmonary artery pressure from blockage of flow (can also be due to vasospasm.)
 - Ischemia of downstream pulmonary parenchyma.
 - If a Large embolus embeds in main pulmonary artery of its major branches or lodge along the bifurcation (saddle embolus) → Immediate hypoxia or acute right-sided heart failure (cor pulmonale) → No time for morphological changes in lung → sudden death

Thromboembolism 2

- Smaller emboli occlude smaller arteries
 - With good circulation → lung parenchyma maintained but ischemic damage to epithelial cells → alveolar hemorrhage
- + ::
 o Bad cardiovascular status (e.g. congestive heart failure) → Infarction (more peripheral emboli → higher risk of infarction so ~75% of infarcts in lower lobes, more than 50% multiple)
 - · Morphology of infarcts
 - Wedge-shaped, base at pleural surface, apex toward hilum of lung
 - In the early stages: Hemorrhagic, raised, red-blue areas of coagulative necrosis...
 pleural surface covered by fibrinous exudate.. occluded vessel is at apex
 - o Within 48 hours: Lysis of RBC → infarct becomes red-brown as hemosiderin is produced
 - After a while: Fibrous replacement occurs at margins → gray-white peripheral zone → → infarct turns to scar
 - · Clinical consequences of pulmonary thromboembolism
 - 60-80% are clinically silent because emboli is small → bronchial circulation keeps parenchyma alive → emboli mass removed by fibrinolytic activity
 - 5% of cases: Sudden death, acute cor pulmonale or cardiovascular shock, this happens
 when more than 60% of pulmonary vessels are obstructed (by one large embolus or
 multiple simultaneous small emboli)
 - 10-15% of cases: small to medium pulmonary branches occluded → pulmonary infarction (if circulatory insufficiency is present) → present with dyspnea
 - < 3% of cases: recurrent showers of emboli → pulmonary hypertension → chronic right-sided heart failure → → vascular sclerosis → worsening dyspnea

Emphysema 1

▼ Emphysema


- Permanent enlargement of air spaces distal to the terminal bronchioles AND Destruction of their walls, without significant fibrosis
- Grouped with Chronic bronchitis as Chronic Obstructive Pulmonary disease (COPD)
- ▼ 4 major types:
 - ▼ 1) Centriacinar (centrilobular) emphysema
 - · Respiratory bronchioles are affected (Central/proximal part) Alveoli not affected
 - More in upper lobes (especially apical)
 - Most common in smokers (in association with chronic bronchitis)
 - Macroscopic: lungs are deeper pink than in panacinar and less voluminous, upper two thirds of lungs more severely affected
 - ▼ 2) Panacinar (panlobular) emphysema
 - Acini uniformly enlarged (ALL)
 - More in lower lobes
 - Associated with alpha1-anti-trypsin deficiency
 - A1-anti trypsin present in: serum, tissue fluids. macrophages
 - Major inhibitor of proteases (elastases)
 - Secreted by neutrophils
 - Encoded by gene in Pi locus on chromosome 14
 - Macroscopic: produces pale, voluminous lungs (can obscure the heart at autopsy)

Emphysema 2

- ▼ 3) Distal acinar (paraceptal) emphysema
 - Distal part of acinus involved (proximal normal)
- → … More obvious next to pleura, along septa, and at the margins of lobules.
 - · Occurs next to areas of fibrosis, scarring and atelectasis
 - More severe in upper half
 - Characteristic finding: multiple, neighboring enlarged air spaces (diameters range from <0.5 to >2 cm)
 - · Sometimes forms cystic structures that may give rise to bullae
 - Unknown cause
 - Most common in young adults presenting with spontaneous pneumothorax
 - ▼ 4) Irregular emphysema
 - · Acinus irregularly involved
 - Almost always associated with scarring
 - Clinically asymptomatic
- ▼ Factors that influence development of emphysema
 - 1. Inflammatory cells and mediators
 - 2. Protease-anti-protease imbalance
 - 3. Oxidative stress
 - 4. Airway infection

Emphysema 3

- ▼ Histological examination
 - Destruction of alveolar wall (without fibrosis) → enlarged air spaces
 - Alveolar loss
- + !! Number of alveolar capillaries diminished
 - · Possible deformation of terminal and respiratory bronchioles because of loss of septa
 - In advanced disease: Bronchial inflammation and submucosal fibrosis

▼ Clinical features

Dyspnea, Weight loss, Barrel chest, Pink buffers

When Obese and with chronic bronchitis → blue bloaters

COPD → Secondary hypertension

Respiratory failure or right-sided heart failure → death

- ▼ Conditions related to emphysema
 - 1. Compensatory emphysema
 - 2. Obstructive overinflation
 - 3. Bullous emphysema
 - 4. Mediastinal (interstitial) emphysema

Done by: Raghad Amr