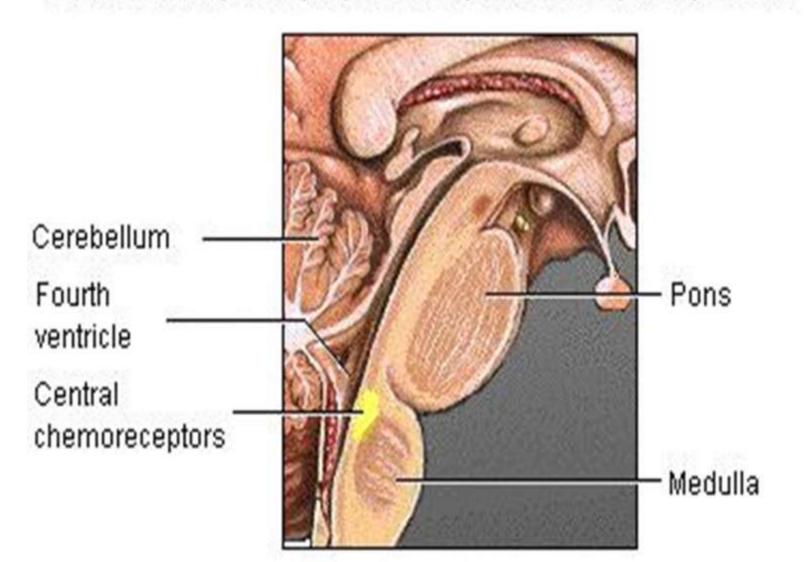
REGULATION OF RESPIRATION

9- CHEMICAL REGULATION OF RESPIRATION

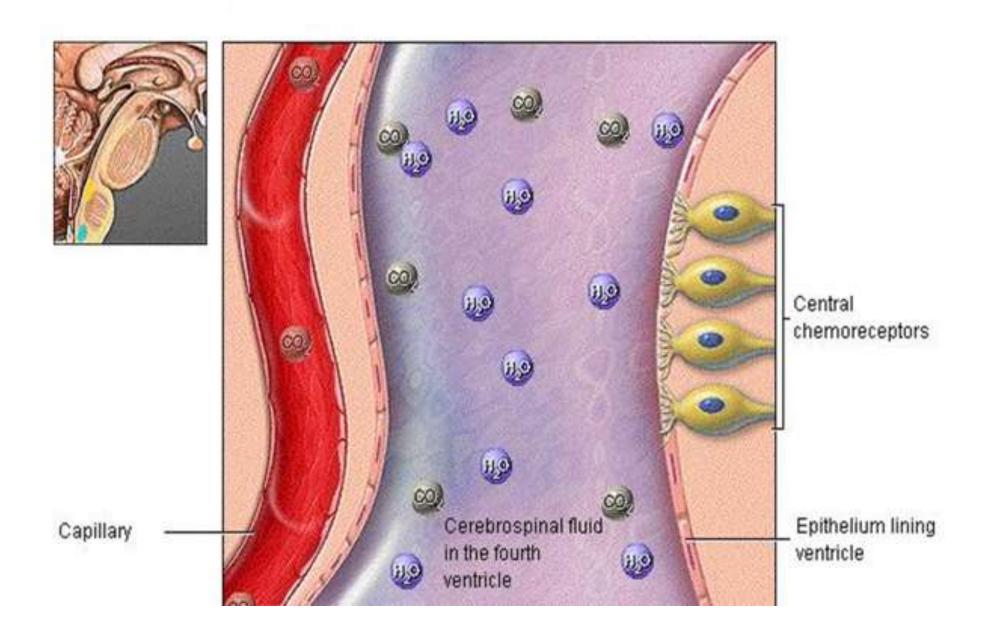
BY

Dr. Nour A. Mohammed MUTAH SCHOOL OF MEDICINE

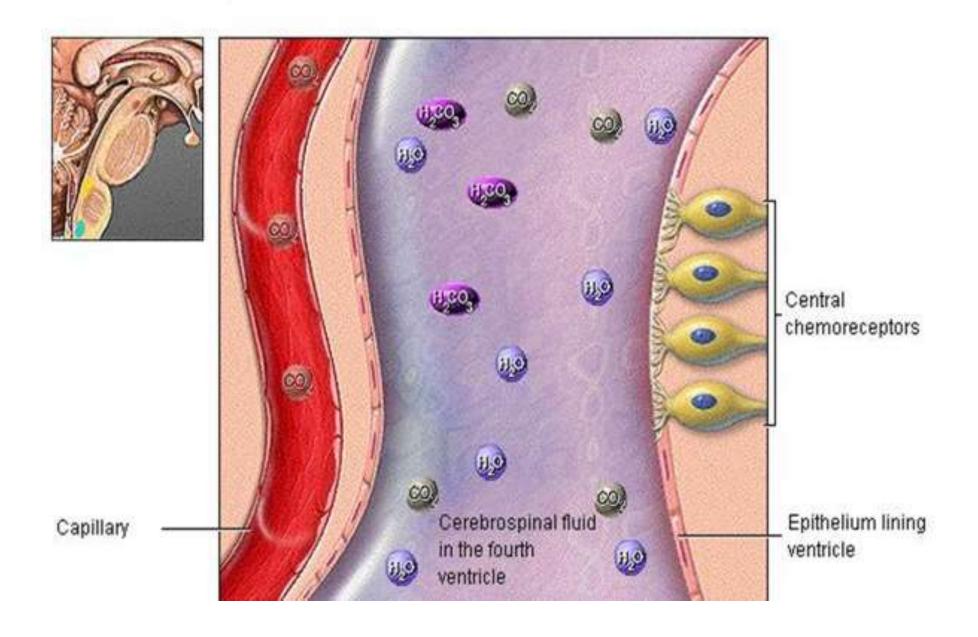

[B] Chemical regulation of respiration

-Respiration is stimulated by: \uparrow Co2 tension , \downarrow O2 tension and \uparrow H+ ion concentration in the arterial blood.

- These changes are associated with increase the metabolic activity.

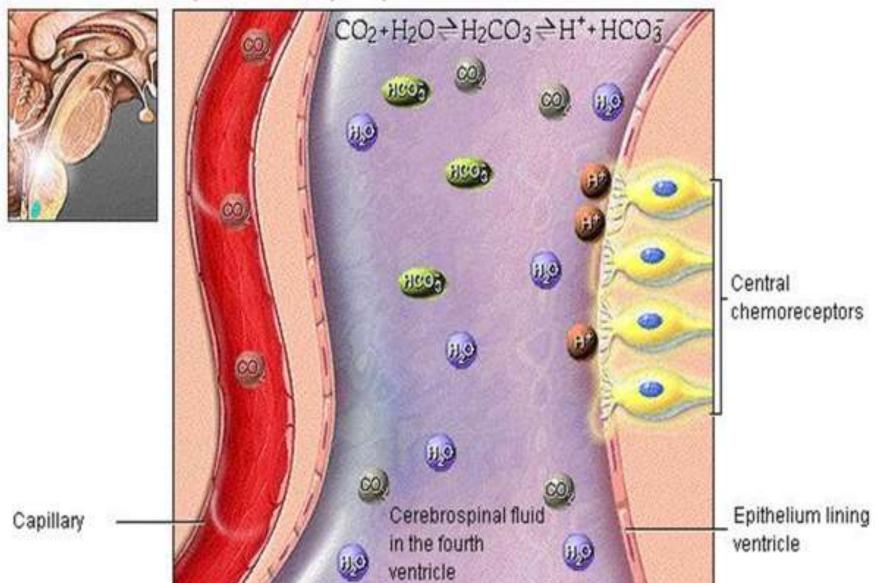

-This effect occurs via the peripheral and central chemo-receptors.

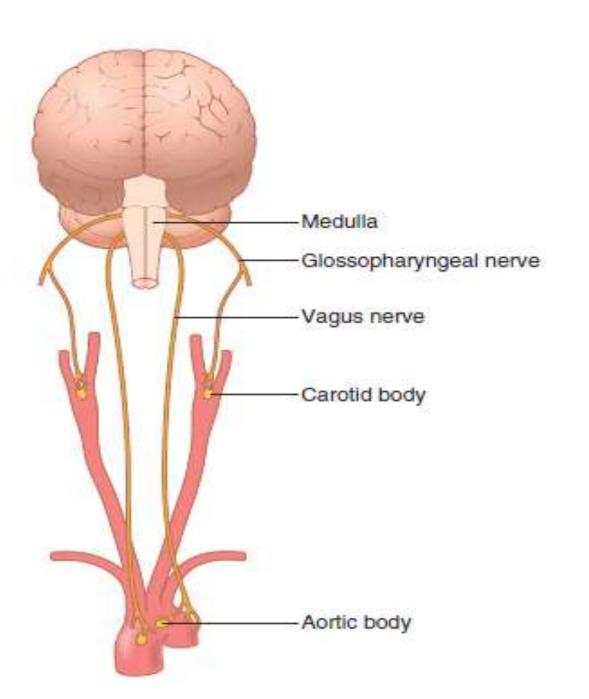
The central chemoreceptors in the medulla monitor the pH associated with CO₂ levels in the CSF in the fourth ventricle. The chemoreceptors synapse directly with the respiratory centers



	Central chemoreceptors
Afferent	- Bilaterally in medulla - Near to respiratory center. But, separate from it. - Direct contact with (CSF) But, separated from the blood by
Stimulus	the blood brain barrier (BBB). These receptors are ONLY stimulated by ① PCO₂ in arterial blood. CO₂ penetrate the BBB because CO₂ is lipid soluble. In CSF: By carbonic anhydrase enzyme: CO₂ + H₂O ⇔ H₂CO₃ H₂CO₃ ⇔ H⁺ + HCO₃. H⁺ in CSF stimulates the chemoreceptors which in turn stimulate the respiratory center. H⁺ is not buffered by CSF as it has low protein content. TH⁺ in arterial blood not stimulate these receptors as H⁺ not penetrate the blood brain barrier.

CENTRAL CHEMORECEPTORS: EFFECT OF PCO2




CENTRAL CHEMORECEPTORS: EFFECT OF PCO2

CENTRAL CHEMORECEPTORS: EFFECT OF PCO2

The hydrogen ions stimulate the central chemoreceptors, which send nerve impulses to the respiratory centers in the medulla.

Peripheral Chemoreceptors In Aortic & Carotid Bodies

	Peripheral chemoreceptors
Site	Aortic body: In the aortic arch. Carotid body: at bifurcation of common carotid artery.
Afferent	Aortic body via: Vagus nerve. (X) Carotid body via: glossopharyngeal(IX) BOTH are called: the <u>buffer nerves</u> .
Stimulus	 Hypoxia (♣ O₂ tension to 60mmHg) the main stimulus. So, they are called O₂ lack receptors. Hypercapnia (ℜ CO₂ tension) with less effect (30% of effect). Acidosis (ℜ H⁺ concentration). ℜ ℜ Nicotine. These conditions occur by: Hypotension & Hyperactive tissue Hemorrhage & at High altitude. The blood flow to these receptors is very high = 2000ml/100 gm tissue. So, these receptors depend only on the dissolved O₂ and stimulated by very low PO₂. Not stimulated by ♣ Oxyhemoglobin content as in anemia or CO poisoning. Histotoxic hypoxia (♣ O₂ utilization of tissue) is more powerful stimulant.

Ventilatory response to O2 lack

O2 lack is a weaker stimulus for the respiration than the Co2 excess, and act only via the peripheral chemo-receptors.

Respiration is markedly stimulated when the **PO2 in arterial blood** drops **below 60 mmHg** (normally about 95 mmHg).

This weak stimulatory effect (2-4 folds only) is due to:

- 1- Decrease O2 ⇒ more reduced hemoglobin, which is weak acid and buffer H+ leading to inhibition of respiration.
- 2- Decrease O2 \Rightarrow slight stimulation of respiration \Rightarrow wash of Co2 and H+ \Rightarrow decrease Co2 \Rightarrow strong inhibitory effect on respiration which oppose the stimulatory effect of decrease O2 leading to inhibition of respiration.

But the O2 lack effect increased in cases of:

Overdose of Anesthesia as it depresses the **central chemoreceptors** with no response to Co2 and respiration in these cases is maintained only by **O2 lack** ,So, 100% O2 during anesthesia ⇒ inhibit respiration and may be fatal.(Carbogen: Mixture of 5% CO2 + O2 is used to stimulate respiration)

- 1 PCO2 acts on **both** central chemo-receptors (70%) & peripheral chemo-receptors (30%).

Effect of CO2 excess: The CO2 excess effect is augmented by the O2 decrease effect

Ventilatory response to CO2 excess

CO ₂ excess	Effect
û CO₂ in inspired air to 5%	2 folds increase in respiration
⇒ û PCO₂ in arterial blood.	To get rid of this excess CO ₂ .
û CO₂ in inspired air to 10%	10 folds increase in respiration
⇔ û PCO₂ in arterial blood to 50mmHg	To get rid of this excess CO ₂ .
û CO₂ in inspired air to >10%	CO ₂ narcosis:
	Inhibition of respiratory center more
	accumulation of CO ₂ (hypercapnea) & headache
	& coma & death from CO ₂ narcosis.

Ventilatory response to H+

Increased **H**⁺ **concentration** in blood (acidosis) stimulates the respiratory center through stimulation of **peripheral chemo-receptors**.

Therefore, in diabetes mellitus with ketoacidosis \rightarrow This led to hyperventilation (rapid and deep or **kussmaul's breathing**).

On the other hand, an increase in blood PH or alkalosis inhibits the respiratory center e.g. after along period of hyperventilation.

hank