

Atoms, Molecules, and Ions

Section 2.1 *The Early History of Chemistry*

Early History of Chemistry

- Greeks were the first to attempt to explain why chemical changes occur.
- Alchemy dominated for 2000 years.
 - Several elements discovered.
 - Mineral acids prepared.
- Robert Boyle was the first "chemist".
 - Performed quantitative experiments.
 - Developed first experimental definition of an element.

Section 2.2 *Fundamental Chemical Laws*

Three Important Laws

- Law of conservation of mass (Lavoisier):
 - Mass is neither created nor destroyed in a chemical reaction.
 - Law of definite proportion (Proust):
 - A given compound always contains exactly the same proportion of elements by mass.

Three Important Laws (continued)

- Law of multiple proportions (Dalton):
 - When two elements form a series of compounds, the ratios of the masses of the second element that combine with 1 gram of the first element can always be reduced to small whole numbers.

Dalton's Atomic Theory (1808)

• Each element is made up of tiny particles called atoms.

Dalton's Atomic Theory (continued)

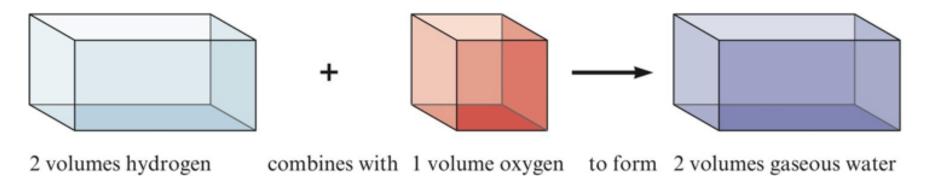
 The atoms of a given element are identical; the atoms of different elements are different in some fundamental way or ways.

Dalton's Atomic Theory (continued)

 Chemical compounds are formed when atoms of different elements combine with each other. A given compound always has the same relative numbers and types of atoms.

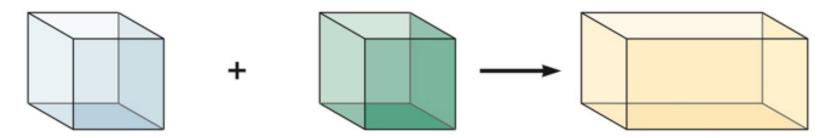
Dalton's Atomic Theory (continued)

- Chemical reactions involve reorganization of the atoms—changes in the way they are bound together.
- The atoms themselves are not changed in a chemical reaction.



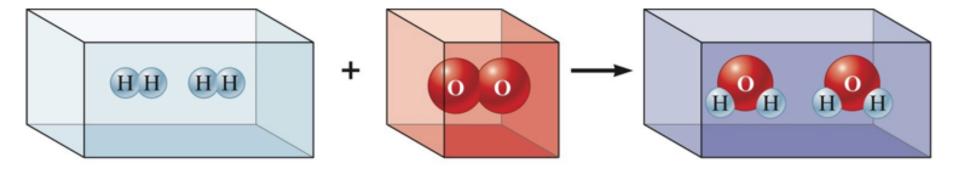
Gay-Lussac and Avogadro (1809—1811)

- Gay—Lussac
 - Measured (under same conditions of T and P) the volumes of gases that reacted with each other.
- Avogadro's Hypothesis
 - At the same T and P, equal volumes of different gases contain the same number of particles.
 - Volume of a gas is determined by the number, not the size, of molecules.


Representing Gay—Lussac's Results

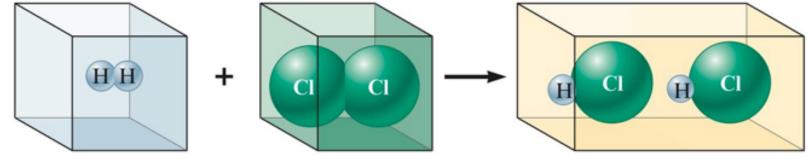
© Cengage Learning. All Rights Reserved.

Representing Gay—Lussac's Results



1 volume hydrogen © Congage Learning. All Rights Reserved.

combines with 1 volume chlorine to form 2 volumes hydrogen chloride


Representing Gay—Lussac's Results

© Cengage Learning. All Rights Reserved.

Representing Gay—Lussac's Results

Congage Learning, All Rights Reserved.

J. J. Thomson (1898—1903)

- Postulated the existence of negatively charged particles, that we now call electrons, using cathode-ray tubes.
- Determined the charge-to-mass ratio of an electron.
- The atom must also contain positive particles that balance exactly the negative charge carried by electrons.

Cathode-Ray Tube

Congage Learning. All Rights Reserved.

Robert Millikan (1909)

- Performed experiments involving charged oil drops.
- Determined the magnitude of the charge on a single electron.
- Calculated the mass of the electron
 - $(9.11 \times 10^{-31} \text{ kg}).$

Millikan Oil Drop Experiment

loading...

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

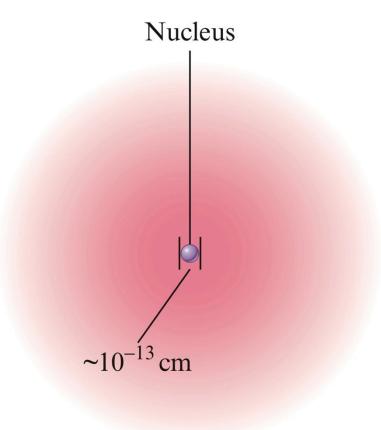
Henri Becquerel (1896)

- Discovered radioactivity by observing the spontaneous emission of radiation by uranium.
- Three types of radioactive emission exist:
 - Gamma rays (Υ) high energy light
 - Beta particles (β) a high speed electron
 - Alpha particles (α) a particle with a 2+ charge

Ernest Rutherford (1911)

- Explained the nuclear atom.
- The atom has a dense center of positive charge called the nucleus.
- Electrons travel around the nucleus at a large distance relative to the nucleus.

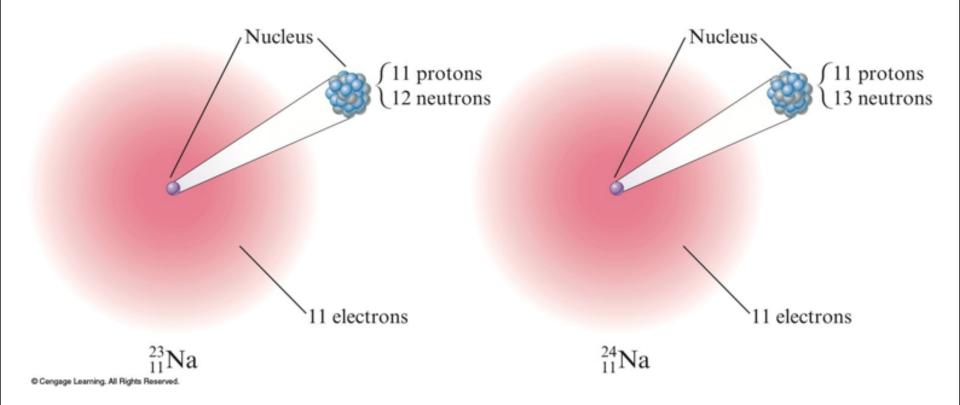
- The atom contains:
 - *Electrons* found outside the nucleus; negatively charged.
 - Protons found in the nucleus; positive charge equal in magnitude to the electron's negative charge.
 - Neutrons found in the nucleus; no charge; virtually same mass as a proton.



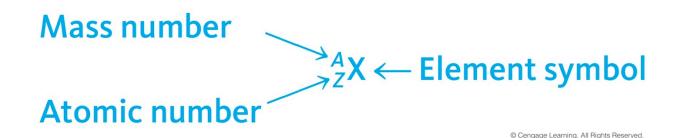
- The nucleus is:
 - Small compared with the overall size of the atom.
 - Extremely dense; accounts for almost all of the atom's mass.

Nuclear Atom Viewed in Cross Section

 $\sim 2 \times 10^{-8} \,\mathrm{cm}^{-1}$



Isotopes


- Atoms with the same number of protons but different numbers of neutrons.
- Show almost identical chemical properties; chemistry of atom is due to its electrons.
- In nature most elements contain mixtures of isotopes.

Two Isotopes of Sodium

- Isotopes are identified by:
 - Atomic Number (Z) number of protons
 - Mass Number (A) number of protons plus number of neutrons

EXERCISE!

A certain isotope X contains 23 protons and 28 neutrons.

- What is the mass number of this isotope?
- Identify the element.

Mass Number = 51 Vanadium

Chemical Bonds

- Covalent Bonds
 - Bonds form between atoms by sharing electrons.
 - Resulting collection of atoms is called a molecule.

Covalent Bonding

loading...

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

Chemical Bonds

- Ionic Bonds
 - Bonds form due to force of attraction between oppositely charged ions.
 - *Ion* atom or group of atoms that has a net positive or negative charge.
 - Cation positive ion; lost electron(s).
 - Anion negative ion; gained electron(s).

Molecular vs Ionic Compounds

loading...

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

A certain isotope X⁺ contains 54 electrons and 78 neutrons.

What is the mass number of this isotope?

133

CONCEPT CHECK!

Which of the following statements regarding Dalton's atomic theory are still believed to be true?

- I. Elements are made of tiny particles called atoms.
- II. All atoms of a given element are identical.
- III. A given compound always has the same relative numbers and types of atoms.
- IV. Atoms are indestructible.

Section 2.7 An Introduction to the Periodic Table

The Periodic Table

- Metals vs. Nonmetals
- Groups or Families elements in the same vertical columns; have similar chemical properties
- Periods horizontal rows of elements

Section 2.7 An Introduction to the Periodic Table

The Periodic Table		Alkaline earth me 2 2A	tals										13 3A	14 4A	15 5A	16 6A	Halogen 17 7A	Noble gases s 18 8A 2 He
	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
	11 Na	12 Mg	3	3 4 5 6 7 8 9 10 11 12 Transition metals							12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
Alkali metals	19	20	21	22	23	24	25	²⁶	27	28	29	³⁰	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Alkali	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	⁸⁶
	Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	⁸⁸	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra	Ac†	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Fl	Uup	Lv	Uus	Uuo

*Lanthanides	⁵⁸	59	⁶⁰	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
[†] Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

© Cengage Learning. All Rights Reserved.

Section 2.7 An Introduction to the Periodic Table

Groups or Families

Table of common charges formed when creating ionic compounds.

Group or Family	Charge
Alkali Metals (1A)	1+
Alkaline Earth Metals (2A)	2+
Halogens (7A)	1—
Noble Gases (8A)	0

Section 2.8 Naming Simple Compounds

Naming Compounds

- Binary Compounds
 - Composed of two elements
 - Ionic and covalent compounds included
- Binary Ionic Compounds
 - Metal—nonmetal
- Binary Covalent Compounds
 - Nonmetal—nonmetal

Binary Ionic Compounds (Type I)

- 1. The cation is always named first and the anion second.
- 2. A monatomic cation takes its name from the name of the parent element.
- 3. A monatomic anion is named by taking the root of the element name and adding *—ide*.

Binary Ionic Compounds (Type I)

- Examples:
 - KCl Potassium chloride
 - MgBr₂ Magnesium bromide
 - CaO Calcium oxide

Binary Ionic Compounds (Type II)

- Metals in these compounds form more than one type of positive ion.
- Charge on the metal ion must be specified.
- Roman numeral indicates the charge of the metal cation.
- Transition metal cations usually require a Roman numeral.
- Elements that form only one cation do not need to be identified by a roman numeral.

Binary Ionic Compounds (Type II)

- Examples:
 - CuBr Copper(I) bromide
 - FeS Iron(II) sulfide
 - PbO₂ Lead(IV) oxide

Polyatomic Ions

- Must be memorized (see Table 2.5 on pg. 65 in text).
- Examples of compounds containing polyatomic ions: NaOH Mg(NO₃)₂ (NH₄)₂SO₄
 Sodium hydroxide Magnesium nitrate Ammonium sulfate

Formation of Ionic Compounds

loading...

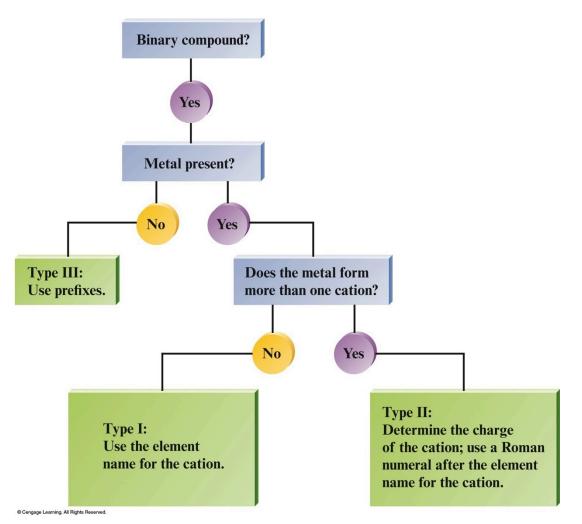
To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

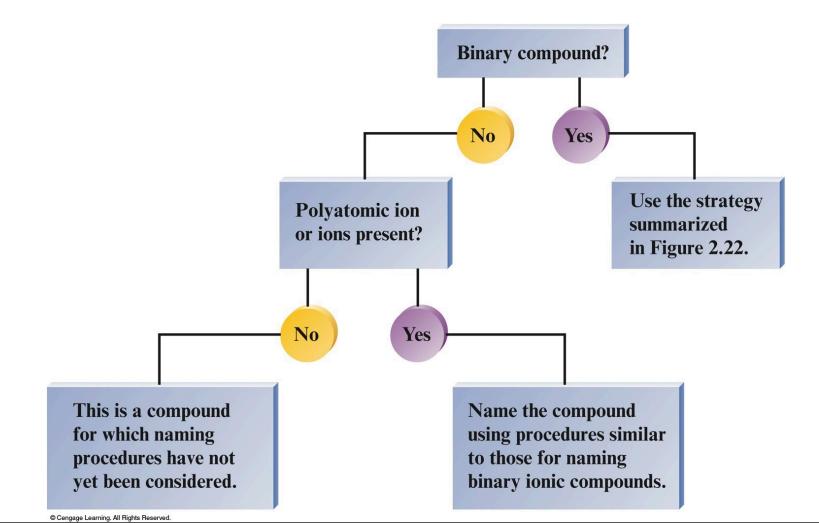
Binary Covalent Compounds (Type III)

- Formed between two nonmetals.
- 1. The first element in the formula is named first, using the full element name.
- 2. The second element is named as if it were an anion.
- 3. Prefixes are used to denote the numbers of atoms present.
- 4. The prefix *mono* is never used for naming the first element.

Prefixes Used to Indicate Number in Chemical Names

Table 2.6Prefixes Used to
Indicate Number
in Chemical Names


Prefix	Number Indicated
Prefix mono- di- tri- tetra- penta- hexa- hepta- octa- nona-	Number Indicated 1 2 3 4 5 6 7 8 9
deca-	10


Binary Covalent Compounds (Type III)

- Examples:
 - CO₂ Carbon dioxide
 - SF₆ Sulfur hexafluoride
 - N₂O₄ Dinitrogen tetroxide

Flowchart for Naming Binary Compounds

Overall Strategy for Naming Chemical Compounds

Acids

- Acids can be recognized by the hydrogen that appears first in the formula—HCl.
- Molecule with one or more H⁺ ions attached to an anion.

Acids

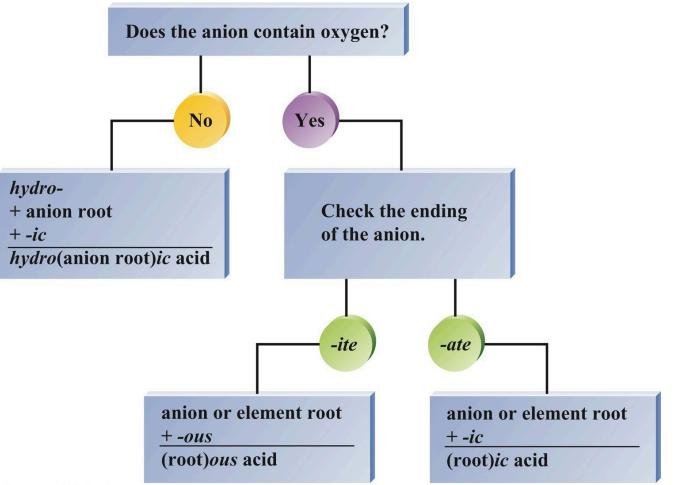
- If the anion does *not* contain oxygen, the acid is named with the prefix *hydro*— and the suffix —*ic*.
- Examples:

HCI	Hydrochloric acid
HCN	Hydrocyanic acid
H ₂ S	Hydrosulfuric acid

Acids

- If the anion *does* contain oxygen:
 - The suffix –*ic* is added to the root name if the anion name ends in –*ate*.
- Examples:

HNO ₃	Nitric acid
H ₂ SO ₄	Sulfuric acid
$HC_2H_3O_2$	Acetic acid


Acids

- If the anion *does* contain oxygen:
 - The suffix –ous is added to the root name if the anion name ends in –ite.
- Examples:

HNO₂ Nitrous acid H₂SO₃ Sulfurous acid HClO₂ Chlorous acid

Flowchart for Naming Acids

© Cengage Learning. All Rights Reserved.

EXERCISE!

Which of the following compounds is named incorrectly?

a) KNO ₃	potassium nitrate
b) TiO ₂	titanium(II) oxide
c) Sn(OH) ₄	tin(IV) hydroxide
d) PBr ₅	phosphorus pentabromide
e) CaCrO ₄	calcium chromate