Autonomic Nervous System

Parasympathomimetic drugs
 Parasympatholytics
 Sympathomimetics
 Sympatholytics

	Sympathetic	Parasympathetic	
Anatomy: 1- Origin	From 1 st thoracic to 3 rd lumber segments	-Cranial: (III,VII,IX&X) -Sacral: (S2,3,4)	
2- Ganglia	Close to spinal cord	Near or embedded in organs	
3- Preganglionic	Short	Long	
4- Postganglionic	Long	Short	
 5- Innervation: Most organs receive dual nerve supply <u>except</u>: 	 Sympathetic only Dilator pupillae muscle [DPM]. Erector pili M. Sweat glands Adrenal medulla. Ventricles •Blood vessels 	 Parasympathetic only Constrictor pupillae muscle [CPM] 	
Physiology: النتاعيم • Tone	Blood vessels & sweat glands.	All organs except blood vessels& sweat gland.	

Autonomic Nervous System

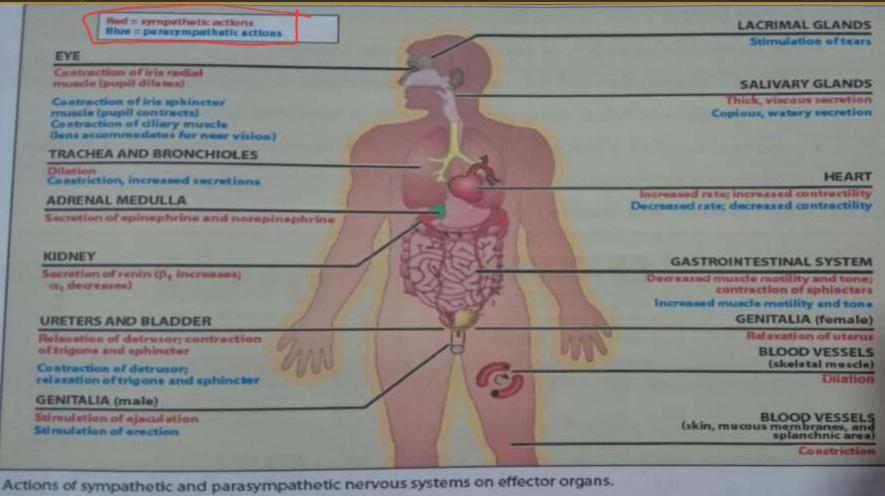
> Invoulantary

The autonomic nervous system(ANS) is concerned primarily with visceral functions such as cardiac output, blood flow to various organs, and digestion, which are necessary for life.

The autonomic nervous system has two divisions: sympathetic & parasympathetic.

	Sympathetic	Parasympathetic	
• Actions	They are antagonistic except for atrial conduction and salivation [both] متعادين م بعن جون		
Cardiovascular:Heart	tall cardiac properties.	↓ all cardiac properties.	
- Blood vessels	-VC of skin &mucous membrane blood vessels. -VD of coronary & skeletal blood vessels	Not innervated	
-Blood pressure	Increased	Decreased	
• Eye	Active mydriasis [++DPM]	1-Miosis[+++CPM] constriction 2- Accommodation for near vision 451 → Happenes 3-↓↓IOP → Intra Ocular Pressure	
• Bronchi	Bronchodilation	Bronchoconstriction	

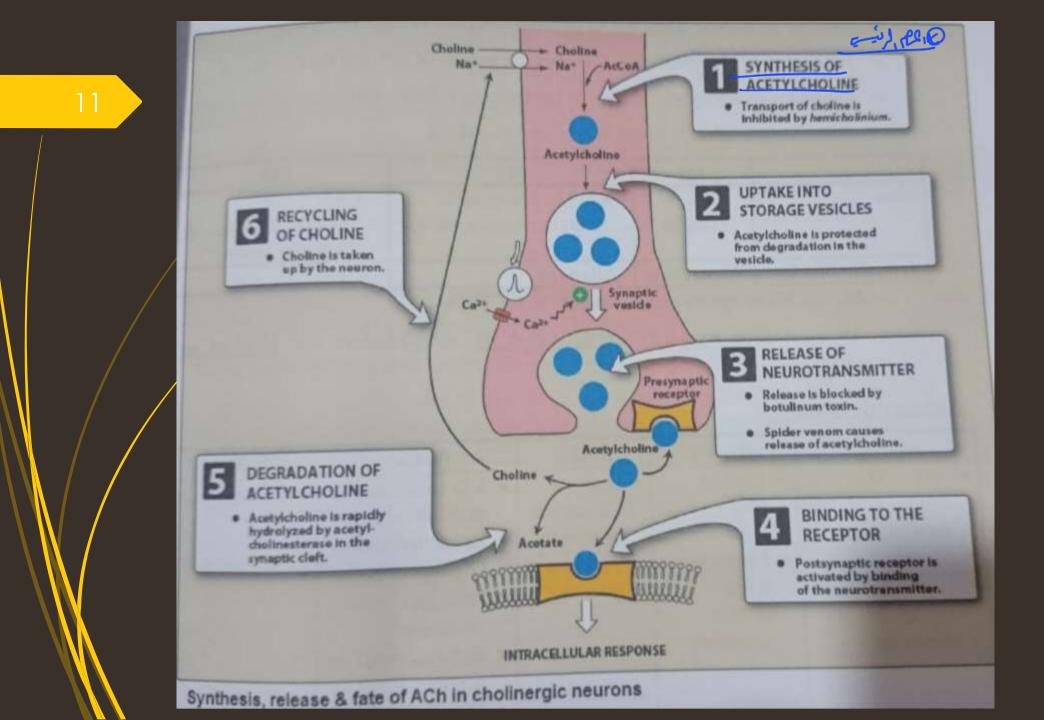
	Sympathetic	Parasympathetic	
• GIT & Urinary tract	Relax wall& contract sphincters	Contract wall& contract sphincters	
• Genital	Ejaculation in male محمد المعادي Relaxation of uterus in female	Erection in male	
 Exocrine glands: Salivary Sweat 	Thick & viscid Increase	Watery No effect	
Neurotransmitters Ganglia 	قاعدة مى جميع لـ NT لل englial NT فاعدة مى جميع لـ Ach هو الـ Ach	Ach	
Postganglionic	Norepinephrine(NE) <i>except</i> in sweat glands Ach is released	Ach	

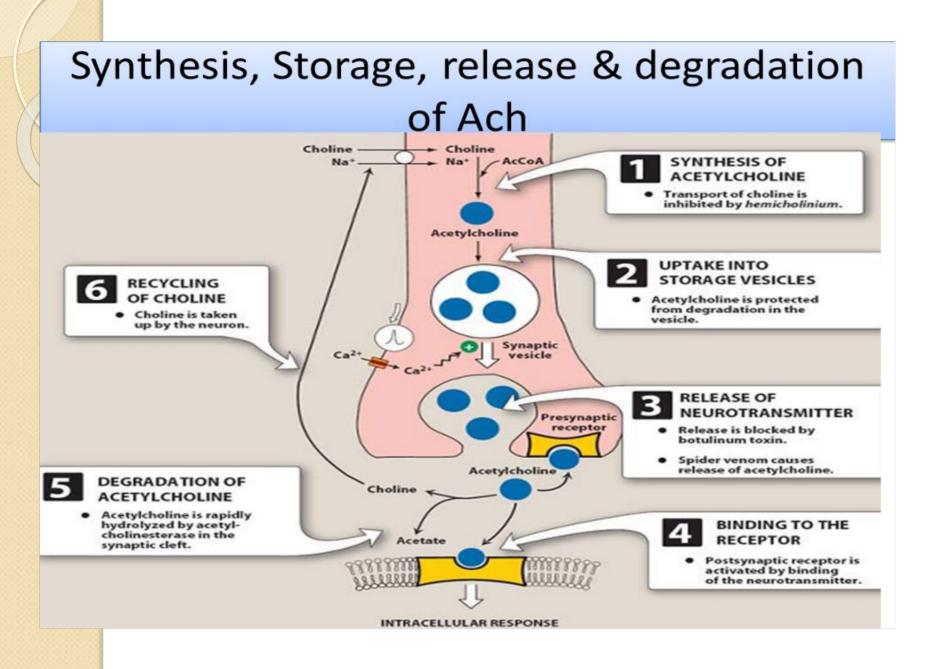

	Sympathetic	Parasympathetic
• Synthesis • Synthesis (1) What are the 2 place that produce EPi? or Advenatione?	 Phenylalanine → tyrosine (by hydroxylase) Tyrosine → DOPA (by tyrosine hydroxylase) DOPA → dopamine (by dopa decarboxylase) Dopamine is actively transported into synaptic vesicles by carrier system Finally, NE is formed by hydroxylation of dopamine (via dopamine B- hydroxylase) * In the adrenal medulla & some CNS tracts, epinephrine(adrenaline) is formed via methylation of NE by phenyl ethanolamine N-methyl-transferase [PENMT] 	 Choline is transported into cholinergic neurons by carrier system Choline is acetylated to Ach by choline acetyl- transferase in presence of acetyl CoA

Release of transmitters:

Arrival of impulse to the nerve ending.

 \triangleright Opening of voltage-activated Ca²⁺ channel \rightarrow calcium influx into nerve ending.


Fusion of vesicles with membrane of the nerve ending and exocytosis of the transmitter.



Red = sympathetic actions	LACRIMAL GLANDS
Blue = parasympathetic actions	Stimulates tears
EYE	
Contraction of iris radial muscle (pupil dilates)	SALIVARY GLANDS
Contraction of iris sphincter muscle (pupil contracts) Contraction of ciliary muscle (lens accommodates for near vision)	Thick, viscous secretion Copious, watery secretion
TRACHEA AND BRONCHIOLES	ا د
Dilates Constricts, increases secretions	HEART
ADRENAL MEDULLA	Increased rate; increased contractility Decreased rate; decreased contractility
Epinephrine and norepinephrine secreted KIDNEY	GASTROINTESTINAL
Secretion of renin (β1 increases; α1 decreases) URETERS AND BLADDER	Decrease in muscle motility and tone; contraction of sphincters Increased muscle motility and tone GENITALIA (female)
Relaxes detrusor; contraction	Relaxation of uterus
of trigone and sphincter	BLOOD VESSELS
Contraction of detrusor:	(skeletal muscle)
relaxation of trigone and sphincter	Dilation
GENITALIA (male)	
Stimulates ejaculation Stimulates erection	BLOOD VESSELS (skin, mucous membranes, and splanchnic area)
	Constriction

Fate of ACh: Metabolism by cholinesterase [2types]

	True cholinesterase براندون	Pseudo-cholinesterase	
Sites	Cholinergic structures, RBSs and CNS.	Contract wall& contract sphincters	
Specificity	ACh, Methacholine	Non specific- destroys Ach, procaine and succinylcholine.	
Regeneration	In 3 month لفتى بعتلى وقت أطول	In 3 weeks	

Autonomic Receptors

- ¹² Cholinergic receptors: Cholinergic receptors are classified into:
- **A.** *Nicotinic receptors:* They are directly **coupled to Na⁺ channels** and mediate fast excitatory synaptic transmission at:
- 1. The neuromuscular junction.
- 2. Autonomic ganglia.
- 3. Adrenal medulla.
- 4. / Various sites in CNS
- **B.** *Muscarinic receptors:* They are **G-protein-coupled receptors** causing : Activation of phospholipase C (hence formation of IP3 and DAG) $[M_{1,3,5}]$. Inhibition of adenylyl cyclase \longrightarrow decrease in cAMP, activation of potassium channels or inhibition of calcium channels $[M_{2,4}]$.

	M1	M2	M3
Sites	- CNS - Ganglia	 CNS & presynaptic Heart (mainly of atria) 	 CNS Smooth muscles & secretory glands
Selective blocker	Pirenzepine	Gallamine	

- \circ M₄ and M₅ receptors present mainly in the CNS.
- All muscarinic receptors are <u>activated by</u> acetylcholine and <u>blocked by</u> <u>atropine.</u>
 - why? Antomuscarimh
 - But it dosenf block Nicotoniz R's

<u>Autonomic drugs</u>

- 1. Parasympathomimetics.
- 2. Parasympatholytics.
- 3. Sympathimetics.
- 4. Sympatholytic.
- 5. Ganglion stimulants & ganglion blockers.

Parasympathomimetics [Cholinomimetic drugs]

Acetylcholine (ACh) receptor stimulants and cholinesterase inhibitors together comprise a large group of drugs that **mimic** Ach (cholinomimetics or parasympathomimetics).

Cholinoceptor stimulants: they are either:

Direct-acting cholinomimetic agents bind to and activate muscarinic and/or nicotinic receptors: 1- Choline esters: ⇒ 1.5 Choline esters:

*Ach * Methacholine * Carbachol

* Bethanechol

2- Cholinomimetic alkaloids: * Pilocarpine

 $\begin{array}{c} 16 \\ \hline & \text{II-Indirect-acting agents} \text{ inhibit cholinesterases } \rightarrow \text{increase the endogenous} \\ \hline & \text{Ach in synaptic clefts and neuroeffector junction} \rightarrow \text{stimulate cholinoceptors.} \\ \hline & \text{The are classified into:} \end{array}$

Reversible	Irreversible	
 Physostigmine & neostigmine. 	Organophosphorus compounds:	
Neostigmine substitutes:	- Echothiophate - Isoflurophate	
نحفظ آتامل ؟ مەندرىي تىقىر	- Ware gases e.g. sarin & soman.	
pyridostigmine, ambenonium,	- Thiophosphate insecticides e.g.	
benzpyrinium and demecarium)	parathion & malathion.	
	G Ad Join	

I-Direct Cholinomimetics

(1) <u>Choline esters</u>

They are poorly absorbed and poorly distributed into CNS (they are hydrophilic).

Choline Ester	Susceptibility to cholinesterase	Muscarinic action	Nicotinic action	Selectivity
Acetylcholine	True and pseudo	+++ 3 positive	+++	No selectivity
Methacholine	True only	++++	None	Heart
Carbachol	Non	++	+++	Eye,GIT,urinary
Bethanechol	Non	++	None	GIT,urinary

Pharmacological actions:

Eye:

18

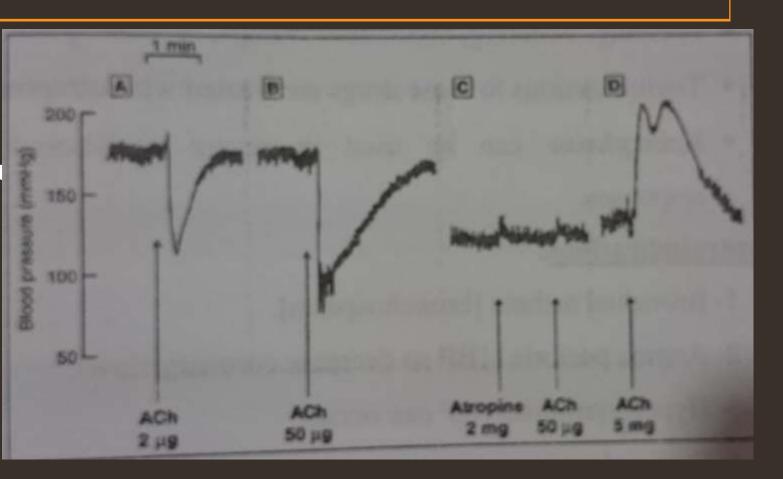
 $Muscarinic (M_3)$

- 1) Contraction of constrictor pupillae muscle \rightarrow resulting in miosis.
- 2) Contraction of the ciliary muscle. Reponsible for Accodemation for New Vision, 451-3 No!
- As a result of 1&2 → the iris is pulled away from the angel of the anterior chamber, and the trabecular meshwork at the base of the ciliary muscle is opened. Both effects facilitate aqueous humor outflow into the canal of Schlemm, and ↓ I.O.P.
 Accommodation for near vision.

Nicotinic: Lid twitches due to activation of nicotinic receptors in the eye lid انتباخات بامجنن muscles. () Why carbaeol causes missis and bil twitching? 2 Ré. (N+M)

When applied to eye, carbachol miosis lid twitches (muscarinic and nicotinic).

Cardiovascular System



- 1) Vasodilation: Stimulation of $M_3 \rightarrow$ production of NO (endothelium derived relaxing factor), which diffuses to smooth muscles cells of blood vessels \rightarrow $cGMP \rightarrow VD$.
- 2) Bradycardia & delay AV conduction are due to stimulation of M_2
- Experimental IV injection of a small dose of Ach —> hypotension.
- If large doses of Ach are injected after atropine [muscarinic blocker] —
 hypertension, due to stimulation of adrenal medulla and autonomic gaglia [
 blocket
 nicotinic action of Ach] —> release catecholamines into the circulation and at postganglionic sympathetic nerve ending —> reversal of action of Ach on blood pressure.

Atropine can **reverse** the hypotensive action of parasympathomimetics having both nicotinic and muscarinic actions [Ach, carbachol& anticholinesterase], but only abolish the hypotensive effect of drugs having only muscarinic actions [Methacholine & Pilocarpine]

The effect of intravenou injection of Ach on the pressure

20

Gastrointestinal and Urinary Tracts $(M_{2,3})$: Stimulation of the wall (M_3) and relaxation the sphincters (M_2) .

Respiratory System:

- Bronchospasm
- Increase bronchial secretion

This combination of effects can cause symptoms, especially in individuals with asthma.

Exocrine Glands (M_3) :

Stimulate secretion of all glands [sweat, lacrimal, salivary, nasopharyngeal glands, gastric, pancreatic and intestinal].

Veuromuscular Junction (N_m) :

Activation of N_m receptors results in Na influx and depolarization of skeletal muscle with muscle contraction. High concentration of Ach results in persistent depolarization \rightarrow muscle weakness and paralysis.

Clinical uses:

22

Bethanechol is very occasionally used in post operative urinary retention and paralytic ileus.

• It acts mainly on M_3 receptors and has little effect on the heart.

Ach, Carbachol & methacholine are used as experimental tools.

Side effects:

Flushing, sweating, abdominal cramps, bronchospasm, headache, and salivation.

Toxic reactions to these drugs are treated with *atropine*.

Epinephrine can be used in severe cardiovascular or bronchoconstrictor responses.

<u>Contraindications</u>: (2) When should I NOT give it? All the following except? 1- Bronchial asthma [bronchospasm]. 23 2- Angina pectoris [BP so decrease coronary flow]. 3- Hyperthyroidism [AF can occur]. 4- Peptic ulcer [++ gastric secretion]. 5- Hypotension [cause vasodilation]. **<u>Cholinomimetic alkaloids</u>** (Pilocarpine) 2) Alkaloid from leaves of Pilocarpus Jaborandi Tertiary amine so: well absorbed from most sites of administration. Crosses BBB (avoided in Parkinsonism) Not metabolized by Ch.E — long duration. • Excreted in urine.

Has muscarinic action, but no nicotinic actions(*its hypotensive effect is abolished* by *atropine*)