Management of Drug Click t Poisoning / Mutah Faculty of Medicine

13/11/2021

Table 1. Most frequent primary suspect drugs in overdose deaths	
Drug Name	Deaths
acetaminophen	115
acetaminophen/HYDROcodone	76
methadone	75
OXYCODONE	61
salicylate	49
morphine	34
fentaNYL transdermal	31
acetaminophen/diphenhydrAMINE	25
QUEtiapine	24
buPR0Pion	21
verapamil	20
diltiazem	16
amitriptyline	16
acetaminophen/oxyCODONE	16
cardiac glycoside	15

Poison Control Centers data for 20081

Causes of death in drug poisoning

CNS depression: Narcotics, sedative-hypnotics
CVS toxicity: Digitalis, Cocaine
Cellular hypoxia: Cyanide and CO
Convulsions: Cocaine
Organ system damage: Paracetamol
Accidents

ABCD of Poisoning treatment

A: Airway
B: Breathing
C: Circulation
D: Dextrose

Prevention of further absorption of the poison:

Remove patient from the toxic environment

Measures of decontamination:

- Removing toxins from:
 - **≻Skin**
 - **>GIT:**

Emesis (not in petrolium nor in corrosive poisoning)
Gastric lavage
Activated charcoal

Principles of treatment of poisoning

ABCD of poisoning treatment >A: Airway, B: Breathing, C: Circulation, D: **Dextrose** Diagnosis; history, exam, investigations Prevention of absorption of the poison: >Skin, GIT (Emesis, G lavage, Activated Charcoal) ♦ Specific antidote Enhancing elimination of toxins by: >Haemodialysis or alteration of urinary pH 13/11/2021

Activated charcoal

Reduces drug absorption • Better than emesis or gastric lavage ♦ Safer, easier, adsorb toxic substances Binds to and inactivates many drugs Does not bind iron, lithium, corrosive acids and alkali

Given early within one hour of poisoning

Specific antidote

Paracetamol ♦ Iron ♦ Digitalis ♦ Benzodiazepines ♦ Opioids OPI (CE inhibitors)

Acetylcysteine Desferoxamine Digoxin antibodies Flumazenil Naloxone Pralidoxime

Enhancing Elimination of Toxins

Haemodialysis:

>Aspirin, Lithium, Carbamazepine

Urinary pH afteration:
 Urine alkalinazation: aspirin
 Urine acidification: amphetamines

Examples of Common Poisoning

13/11/2021

Paracetamol (Acetaminophen)

Most common suicide drug Ingestion of 7 g total (adults) is toxic ♦ A highly toxic metabolite (NABQI) is produced in the liver leading to depletion of the protective hepatic glutathione Patient is asymptomatic initially ♦ After 24–36 hours, hepato-renal failure and even death may occur

Paracetamol poisoning

 Early treatment (within 8 hrs) is important
 N-acetylcysteine IV or methionine orally to increase hepatic glutathione

Pharmacokinetics of Paracetamol

- The highly toxic metabolite is N-acetyl-p-benzo quinonimine (NABQI) conjugates with glutathione
- * In overdose toxicity:
 - Excess NABQI
 - > Glutathione depletion
 - > Then NABQI oxidizes thiol group of enzymes
 - > Leading to cell death
- Resulting in hepatic & renal tubular cell damage

Paracetamol (Acetaminophen)

Serum level > 200 mg/L after 4 hours of ingestion suggests a risk for liver injury

 Acetylcysteine acts as a glutathione substitute, binding the toxic metabolite

Should be started within 8–10 hours if possible

Anti-muscarinic agents (Atropine-like drugs)

Hot, dry, flushed skin
Blurred vision
Delirium
Tachycardia, mydriasis
Treatment is supportive

Aspirin (Salicylate)

♦ Ingestion of > 200 mg/kg

- Hyperventilation, respiratory alkalosis, metabolic acidosis
- ♦ Hyperthermia
- Convulsions, coma
- CV collapse

Aspirin (Salicylate)

General supportive care ♦ Gastric lavage Activated charcoal ♦ IV fluid IV sod bicarbonate: renal elimination Severe poisoning: Haemodialysis

Organophosphorous insecticide poisoning

Cholinergic crisis **Muscarinic & Nicotinic stimulation** Pinpoint pupil, sweating, diarrhoea Urination, defecation Hypotension, bradycardia ♦ Treatment: Atropine (anti-muscarinic) Pralidoxime (enzyme reactivator)

Other poisoning

Iron: Childhood poisoning; bleeding Desferoxamine

Opioids:
 Drugs of abuse
 CNS & respiratory depression
 Naloxone IV

13/11/2021

Other poisoning

Carbon monoxide (CO):
 Colorless, odorless gas
 Results from incomplete combustion
 Forming carboxyhaemoglobin
 Interfering with carrying of oxygen
 Leading to hypoxia

Cyanide poisoning:
 Syncope, convulsions, coma
 Treatment: Cyanide antidote kit consists of:
 Nitrites: induce methemoglobinemia

> Thiosulfate: converts cyanide to thiocyanate