PATHOLOGY LAB

DR. BUSHRA ALTARAWNEH, MD
ANATOMICALPATHOLOGY
MUTAH UNIVERSITY
SCHOOL OF MEDICINE-DEPARTMENT OF
LABORATORY MEDICINE \& PATHOLOGY ENDOCRINE SYSTEM LECTURES 2021

A-pituitary gland

Click to add text

NORMAL ANTERIOR PITUITARY GLAND

Normal anterior pituitary gland

Normal Ant.pituitary composed of acidoophilic and pasophilic cells according to color and pale chromophobescells

Normal pos.pituitary
Composed of glial cells and nerve axons

The pink acidophils secrete growth hormone (GH) and prolactin (PRL)
The dark purple basophils secrete corticotrophin (ACTH), thyroid stimulating hormone (TSH), and gonadotrophins follicle stimulating hormone-luteinizing hormone (FSH and LH) .
The pale staining chromophobes have few cytoplasmic granules, but may have secretory activity.

The neurohypophysis shown here resembles neural tissue, with glial cells, nerve fibers, nerve endings, and intra-axonal neurosecretory granules.
The hormones vasopressin (antidiuretic hormone, or ADH) and oxytocin made in the hypothalamus (supraoptic and paraventricular nuclei) are transported into the intraaxonal neurosecretory granules where they are released.

BEHAVIOUR OF PITUITARY ADENOMAS :

- Primary pituitary adenomas usually benign.
- Radiological changes in sella turcica .
- May or may not be functional(20\%). If functional (80\%), the clinical effects are secondary to the hormone produced.
- More than one hormone can be produced from the same cell (monoclonal).
- Local effects are due to pressure on optic chiasma (visual disturbance), or pressure on adjacent normal pituitary cells (reduce hormone production).

Mass effect of pituitary adenoma

CLINICAL FEATURES OF PITUITARY ADENOMA:

1- Symptoms of hormone production.
2- Visual field abnormalities (pressure on optic chiasma above sella tursica).

3- Elevated intracranial pressure (blockage of CSF flow): Headache, nausea, vomiting.

4- Hypopituitarism (result from pressure on adjacent pituitary): Diabetes insipidus .

5-Cranial nerve palsy (invasion to brain).

MORPHOLOGY OF PITUITARY ADENOMAS :

- Well circumscribed, invasive in up to 30%
- Size 1 cm . or more, specially in nonfunctioning tumor
- Hemorrhage \& necrosis seen in large tumors (pituitary apoplexy).
Microscopic picture:
- Uniform cells, one cell type (monomorphism)
- Absent reticulin network
- Rare or absent mitosis

Sella turcica with pituitary adenoma

1- PROLACTINOMA :

- 30\% of all adenomas, chromophobe or w. acidophilic
- Functional even if microadenoma, but amount of secretion is related to size
- Mild elevation of prolactin does NOT always indicate prolactin secreting adenoma!
- Other causes of \uparrow prolactin include :
- estrogen therapy
- pregnancy
- certain drugs, e.g reserpine (dopamin inhibitor).
- hypothyroidism
- mass in suprasellar region ?

2- Growth hormone secreting adenoma :

Structure :

Composed of granular ACIDOPHILIC cells and may be mixed with prolactin secretion.

Symptoms :
May be delayed so adenomas are usually large Produce GIGANTISM (children) or ACROMEGALLY (adults).
Diabetes, arthritis, large jaw \& hands, osteoporosis,个BP, HF.....etc

NORMAL PITUITARY GLAND

Reticulin stain highlight the septa between cells

Pituitary adenoma

Monotomas cells Absent reticulin stain

(c) Elsevier 2005

ACROMEGALY V.S DWARFISM

GROSS SECTIONS OF PITUITARY ADNOMA

© Elsevier 2005

B-Thyroid gland

Follicles lined by flat
epithlium

Normal thyroid gland

Hyperthyroidism symptoms

Hand tremors

Difficulty in sleeping

Hair loss

Elevated blood presure

Menstrual problems

Swollen eyes

Weight loss

Irregular heart rate

Nervousness

Feeling hungry

HYPOTHYROIDISM IS COMMONER IN ENDEMIC AREAS OF IODINE DEFICIENCY

CRETINISM : hypothyroidism in infancy \& is related to the onset of deficiency .
If early in fetal life \rightarrow Mental retardation, short stature, hernia, skeletal abnormalities, Protruding tongue.

MYXEDEMA in adults \rightarrow Apathy, slow mental processes, cold intolerence, accumulation of mucopolysaccharides in subcutaneous tissue, deepening of the voice and constipation.

Lab.tests :

SEVERE HYPOTHYROIDISM (CRETINS)

از ا كانت الام معها
Hypothroidism
الطفل بينولا معو
Cretinism in infancy early

In adult the patient obese and have constipation ,hair loss

HASHIMOTO'S THYROIDITIS : CHRONIC LYMPHOCYTIC THYROIDITIS

- Autoimmune disease characterized by progressive destruction of thyroid tissue
- Commonest type of thyroiditis
- Commonest cause of hypothyroidism in areas of sufficient iodine levels
- F:M = 10-20 :1, 45-65 yrs.

MORPHOLOGY:

- Gland is a smooth pale goiter, minimally nodular, well demarcated.
- Dense infiltration by lymphocytes \& plasma cells
- Formation of lymphoid follicles, with germinal centers
- Presence of HURTHLE CELLS
- Fibrosis if present does not extend outside

SUBACUTE GRANULOMATOUS THYROIDITIS:

- Middle aged, more in females. Viral etiology ?
- Self-limited (6-8w)
- Acute onset of pain in the neck , fever, \uparrow ESR, \uparrow WBC
- Transient thyrotoxicosis.
- Firm gland.
- Destruction of acini leads to mixed inflammatory infiltrate.
- Neutrophils, Macrophages \& Giant cells \& formation of granulomas

SUBACUTE LYMPHOCYTIC THYROIDITIS : (SILENT)

- Middle aged females \& post partum patients
- Probably autoimmune with circulating AB
- May recur in subsequent pregnancies
- May progress to hypothyroidism
similar to Hashimoto's thyroiditis without Hurthle cell metaplasia

- Reidel's Thyroiditis -

- Dense fibrosis without prominent inflammation involving the thyroid and contiguous neck structures.
- ass. with idiopathic fibrosis in other sites of the body.
- Circulating anti-thyroid antibodies, ? Autoimmune aetiology.

GRAVE'S DISEASE : MORPHOLOGY :

- Smooth enlargement of gland with diffuse hyperplasia \& hypertrophy
- Lining epithelium of acini :

Tall \& hyperplastic \pm papillae

- Colloid :

Minimal thin colloid with scalloped edge

© Elsevier 2005

Changes in Extrathyroid tissue :

- Generalized lymphoid hyperplasia

Ophthalmopathy : Edematous orbital muscles \&infiltration by lymphocytes followed by fibrosis

Thickening of skin \& subcutaneous tissue
Accumulation of glycosaminoglycans which are hydrophilic acid.

DIFFUSE \& MULTINODULAR GOITRE

GOITER $=$ Enlargement of thyroid Most common cause is iodine deficiency \rightarrow impaired hormone synthesis \rightarrow 个TSH \rightarrow hypertrophy \& hyperplasia of follicles \rightarrow Goiter
Endemic : > 10\% of population have goiter
Sporadic : 1- Physiological demand
2- Dietary intake of excessive
calcium \& cabbages...etc
3 - Hereditary enzyme defects
4- most cases, the cause is not apperant.

MORPHOLOGY:

- Initially diffuse \rightarrow nodular with degenerative changes: colloid cysts, hemorrhage, fibrosis, calcification
- If large may extend retrosternally
- Pressure symptoms are a common complaint
- Picture is that of varying sized follicles, hemorrhage , fibrosis, cysts, calcification
- Patient is often EUTHYROID. but may be toxic or hypofunctioning.

Multinodular goitor Enlargment of thyroid gland duo to hyperplasia and hypertrophy of thyroid Commonin endemic areas duo to iodine deficiency And in other areas mostcommon cause is unknown
RT ThYROID TRANS INF

1-FOLLICULAR ADENOMA

- Usually single.
- Well defined capsule
- Commonest is follicular士 Hurthle cell change
- May be toxic
- Size 1-10cm. Variable colour

MACROSCOPIC PICTURE

1- Uniform follicles, lined by cuboidal epithelial cells.
2- Focal nuclear pleomorphism, nucleoli
(Endocrine atypia)
3- Presence of a capsule with tumor compressing
surrounding normal thyroid outside .

* Integrity of capsule is important in the differentiation of adenoma from well differentiated follicular carcinoma.
Capsular \&/ or vascular invasion \rightarrow Carcinoma
* Papillary changes : is more likely to prove malignant (no papillary adenoma).

©dition

Follicular adenoma

Capsule and inside it normal appearing of the follicles

(c) Elsevier 2005

1- PAPILLARY CARCINOMA :

\checkmark Most common malignant tumor of thyroid gland (70-80 $\%$).
Affect female more than male . Cold on Scan by radioactive Iodine.

Capsular and vascular invasion the diagnosis is follicular carcinoma

Gross :small nodules without sharp margins (irregular margins), some of them appear encapsulated .
\checkmark Solitary or multifocal, solid or cystic, \pm calcification.
\checkmark M/E: Composed of papillary architecture with fibrovascular core with cuboidal cells, less commonly may show follicles. The diagnosis is based on NUCLEAR FEATURES : Clear (Glassy), with grooves \& inclusions . Psammoma bodies are common.
Metastases mainly by lymphatic (ipsilateral L.N.), sometimes from occult tumor .Hematogenous spread late
\checkmark Prognosis is GOOD (10 years survival more than 90%).

(C) E/PAN Downloaded From Ronbins \& Cotran Pathologic Basis of Disease (on 4 December 2005 01:50 PM)

FNA of Papillary CA (nuclear changes)

Psammoma body in Papillary CA

2- FOLLICULAR CARCINOMA :

\checkmark Account for 15% of thyroid malignancy . Usually cold but rarely functional (hot) Well circumscribed with prominent capsule or infiltrative, composed of follicles ,sometimes of Hurthle Cells.
In well differentiated encapsulated tumors , the diagnosis is based on CAPSULAR \& VASCULAR invasion (*adenoma).
Not all showing histological vascular invasion show metastasis. Metastasize usually by blood \rightarrow Lungs, Bone, Liver ..etc. Treatment by surgery + Radioactive Iodine + Thyroxin.
Prognosis is not as good as papillary except in very well differentiated forms.
$\checkmark \underline{M / E}$: Tumors composed of cuboidal cells forming follicles filled with colloid or solid nest, strands of less differentiated cells.
Clinically : present as slowelly enlarged painless nodule (cold nodule)

3- MEDULLARY CARCINOMA:

Account for 5% of thyroid carcinoma .
\checkmark Arise from C cells(parafollicular cells) \rightarrow CALCITONIN
$\checkmark 80 \%$ Sporadic, or 20% familial \pm MEN Syndrome.
\checkmark M/E :Composed of polygonal or spindle cells, usually with demonstrable AMYLOID in the stroma (altered calcitonin deposite).
\checkmark Calcitonin demonstrated in tumor cells .
\checkmark Level of calcitonin in serum may be useful for follow up
\checkmark Calcitonin may be raised in family members, together with demonstrable RET mutation (Marker for early diagnosis) . Metastases by blood stream .
\checkmark Prognosis intermediate, worse in sporadic \& MEN syndromes.

4- ANAPLASTIC CARCINOMA :

\checkmark Markedly infilltrative tumor, invading the neck, rapidly progressive PRESSURE SYMPTOMS.
\checkmark Large cell anaplastic or small cell variant (undifferentiated cells).
\checkmark Radiosensitive tumor, no surgery.
\checkmark Prognosis is extremely bad (die within 2 years of diagnosis), metastasis to distal site .
\checkmark Morphology: Composed of pleomorphic giant cells, spindle cells or small cell anaplastic varients, which may be confused with lymphoma.
\checkmark P53 mutation identified, consistent with tumor progression.

C-Parathyroid gland

Normal parathyroid gland

Figure 1

Figure 2

Figure 3

Adenoma in parathyroid gland We not see adipose tissue
See it just in reminant of gland

Chvostek's sign

An indication of tetany in which a unilateral spasm of the oris muscle is initiated by a slight tap over the facial nerve anterior to the external auditory canal.

Know the difference between $\mathbf{1}^{\circ}, \mathbf{2}^{\circ}, 3^{\circ}$ hyperparathyroidism

- Primary
§PTH \Rightarrow §palcium (normal renal function) -80\% parathyroid adenoma, 15\% parathyroid hyperplasia, carcinoma is rare 5\%
- Secondary

Poor renal function $\Rightarrow \sqrt[\Omega]{ }$ calcium, $\widehat{\mathrm{P}_{4}} \Rightarrow \widehat{\mathrm{PTH}}$ normalca

- Tertiary

Hyperplastic parathyroids from chronic stimulation continue post renal transplant

Edited by : Batool Gharaibeh

