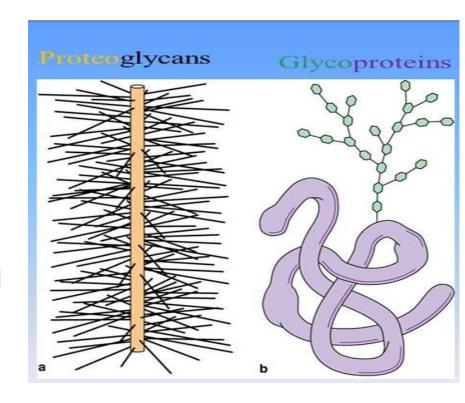
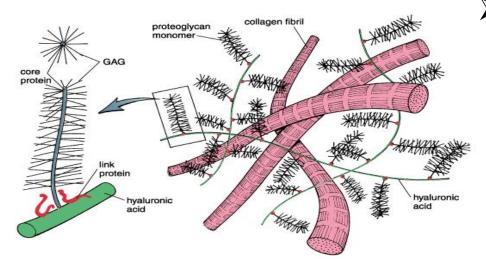
The connective tissue ground substance:


It is the material that fills the spaces between the cells and contains the fibers. It is composed of:

Interstitial tissue fluid, formed of plasma proteins of low molecular weight that escape through the capillary wall as a result of the hydrostatic pressure.

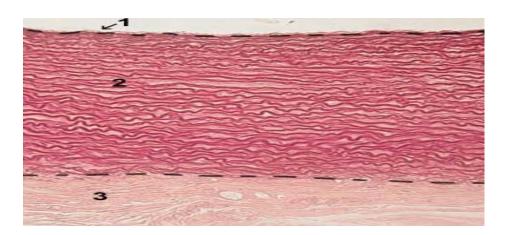
Edema: is an increase in the quantity of the tissue fluid due to loss of the equilibrium between the tissue fluids entering and leaving the matrix of CT.


- Glycosaminoglycans (GAG)
 - linear (unbranched) polysaccharides,
 e.g. heparan sulfate, chondroitin
 sulfate, keratan sulfate, hyaluronic acid
 - attract sodium & hold water
 - very hydrophilic due to abundant negative charges.

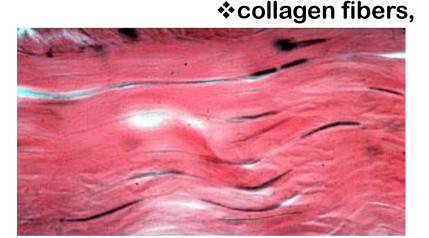
Adhesive glycoproteins e.g. fibronectin and laminin. They serve mainly as connective tissue glue that allows connective tissue cells to bind themselves to matrix elements.

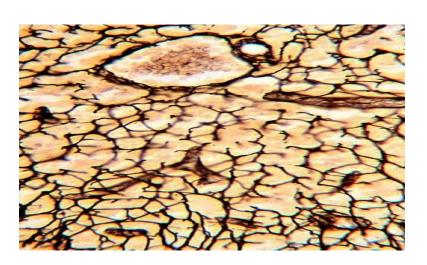
Proteoglycans, consist of a protein core to which glycosaminoglycans (GAGs) are attached. The strand-like GAGs are large, negatively-charged polysaccharides that extend from the core protein like the fibers of a bottle brush. GAGs are like chondroitin sulfate and keratan sulfate.

The proteoglycans tend to form huge
proteoglycan aggregates with
hyaluronic acid that trap water, forming a
substance that varies from a fluid to a
viscous= Jelly like

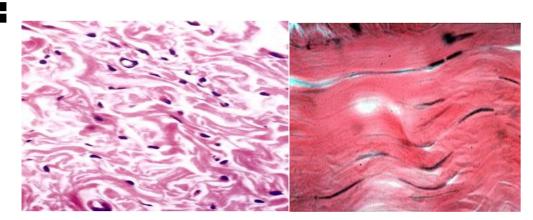


Function:


- The ground substance holds large amounts of fluid and functions as a medium through which nutrients and other dissolved substances can diffuse between the blood capillaries and the cells.
- ➤ Its gel state serves to **resist compression** and to act as a **lubricant**.
- ➤ It also acts as a **barrier** to bacterial penetration. Some virulent bacteria can secrete the enzyme hyaluronidase that hydrolyzes the ground substance and facilitates bacterial invasion to CT.


Connective tissue fibers

- The fibers of connective tissue provide support. They are embedded in connective tissue matrix. There are three types of CT fibers;
- collagen fibers,
- elastic fibers
- reticular fibers.


elastic fibers

* reticular fibers.

Collagen fibers= (white fibers)

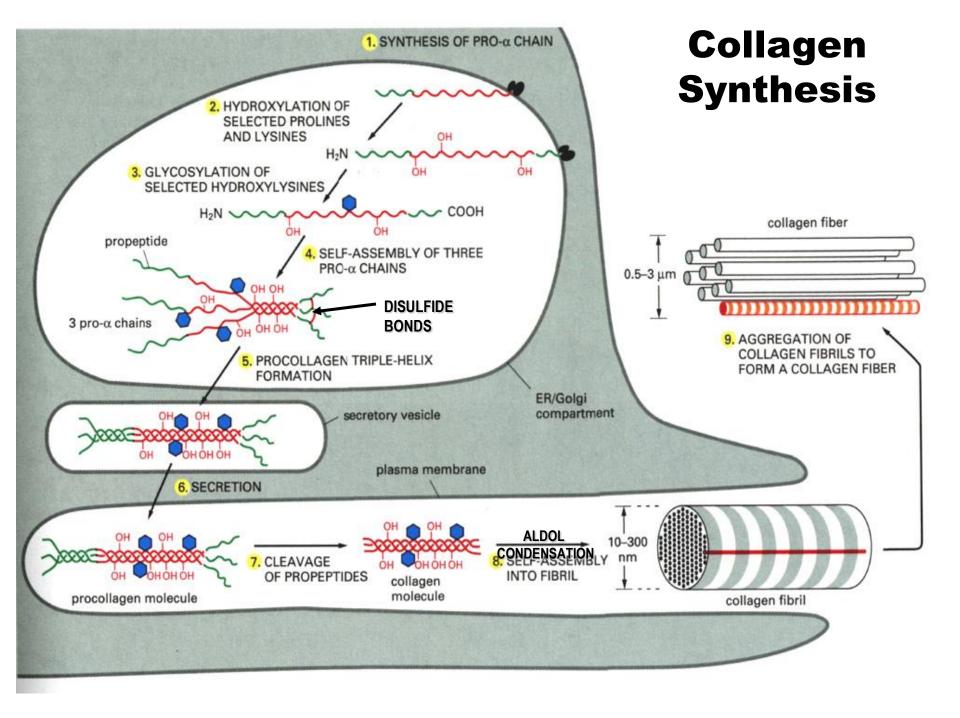
Characters:

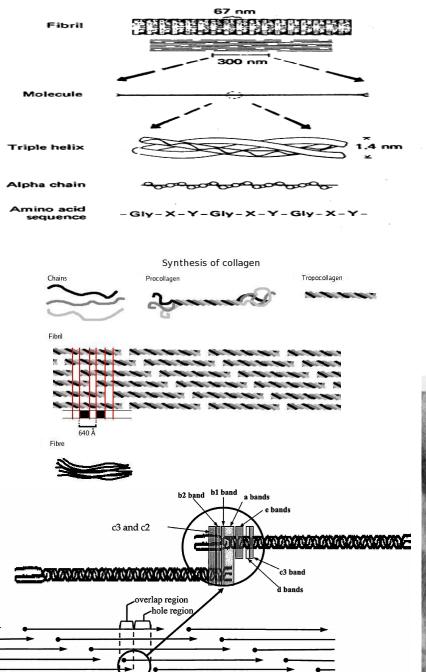
- -Collagen fibers are the **most abundant** CT fibers.
- -They are the **strongest** and provide **high tensile strength** (that is the ability to resist longitudinal stress). Stress test shows that collagen fibers are stronger than steel fibers of the same size.
- -In **fresh state**, collagen fibers have a **glistening white appearance**; they are therefore also called **white fibers**.

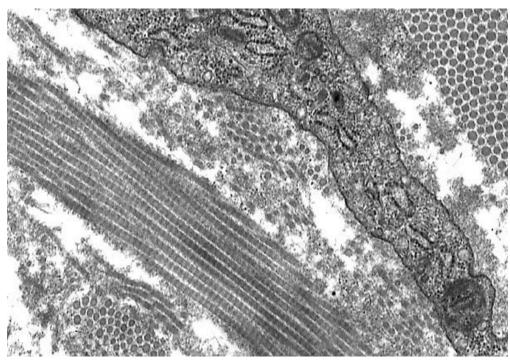
Histological features:

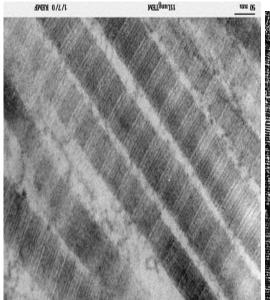
- -In longitudinal section, collagen fibers appear as cylindrical structures that run in wavy bundles
- -The individual fibers do not branch while the bundles of fibers often do.
- -They stain **pink** with H&E (eosinophilic), **blue** with Mallory's stain and **green** with Masson's trichrome stain.

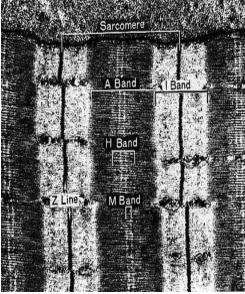
Synthesis of collagen:

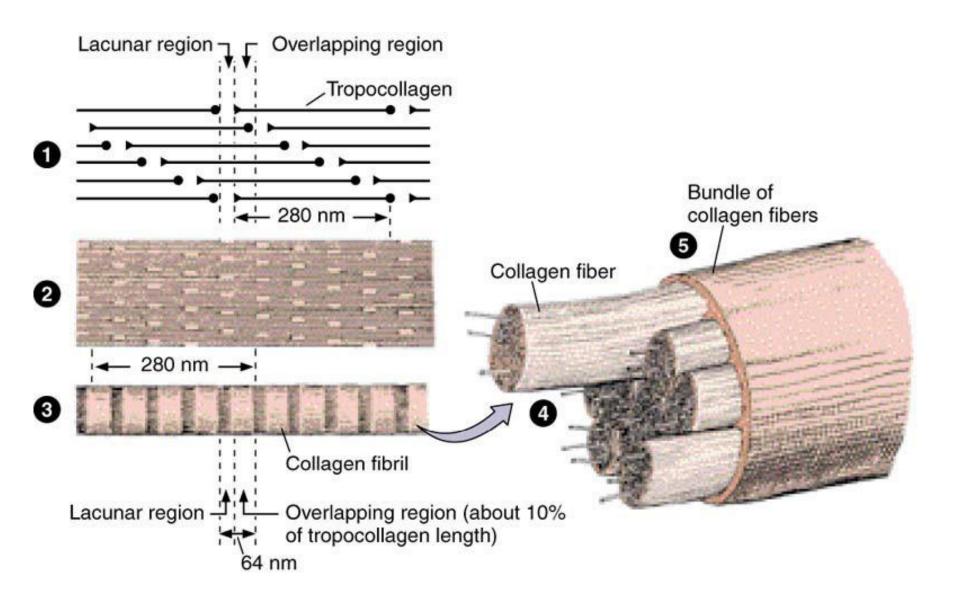

- Procollagen, a precursor of collagen protein is formed inside the fibroblasts then it is released by exocytosis into the extracellular space.
- Procollagen is cleaved to form collagen molecules which assemble spontaneously into collagen fibrils.
- Collagen fibrils in turn are further assembled into collagen fibers which may be bundled together into the thick collagen bundles.

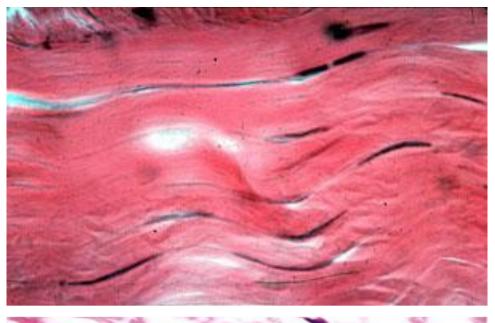

Types of collagen:

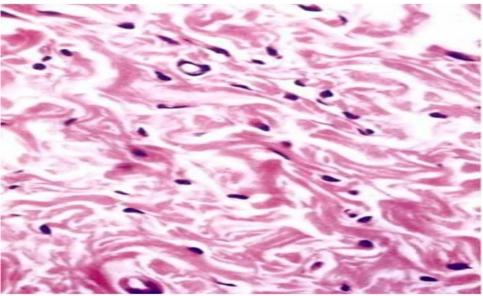

 More than 20 different types of collagen fibers are known. They differ by their molecular composition, morphologic features, distribution in tissues and functions.

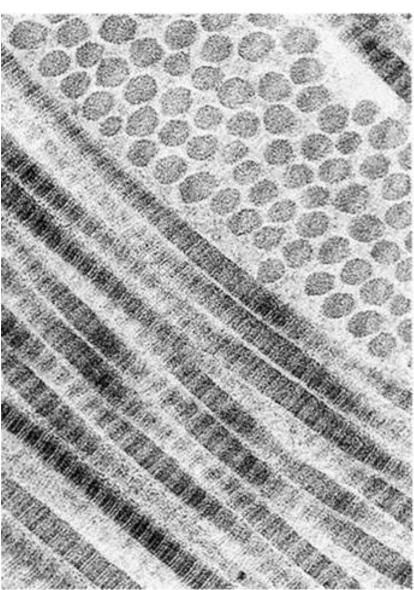

The major types of collagen are:


- Type I collagen fibers in connective tissue proper, and in fibrocartilage and bone matrix.
- Type II collagen fibrils in cartilage matrix (hyaline and elastic).
- Type III collagen fibers form the reticular fibers.
- Type IV in basement membrane.
- Type VII in basement membrane.

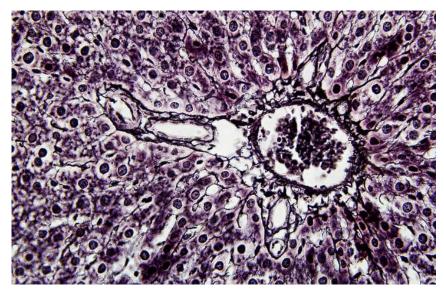


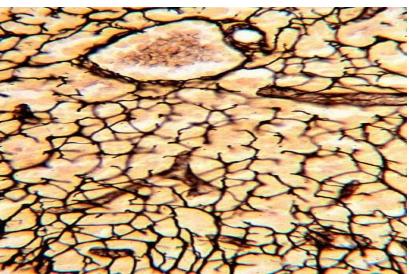

Assembly of collagen fiber bundles




H&E

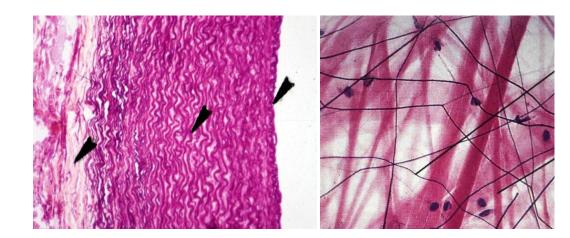
Collagen Fibers





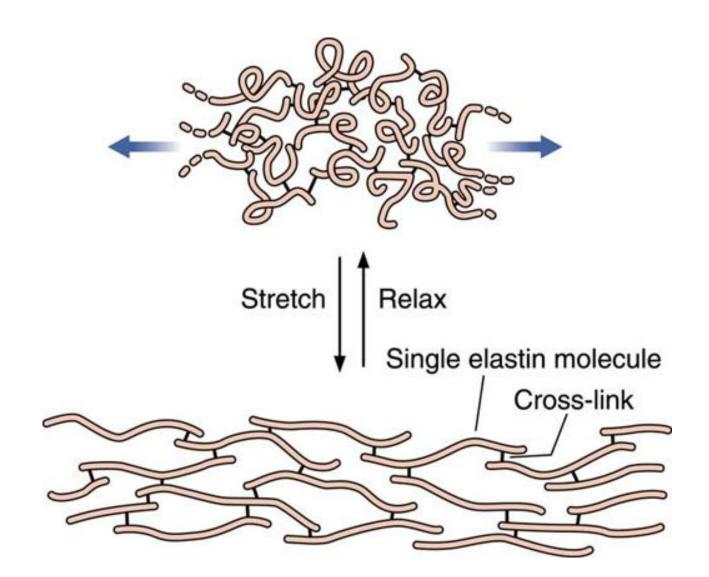
Major Collagen Fiber Types (out of at least 20) According to the chemical composition of collagen molecules

Collagen Type	Tissues	Function						
Fibril-forming collagens (these are visible)								
l (most abundant)	Skin, tendon, bone, dentin Resistance to tension							
II	Cartilage, vitreous of eye	eye Resistance to pressure						
III (reticulin)	Skin, muscle, blood vessels, liver, etc.	Structural framework and stability						
Network-forming collagens								
IV	All basement membranes	Support and filtration						
Anchoring filament collagens								
VII	Epithelia	Epidermis to basal lamina						


Reticular (Reticulin) Fibers

- Form a delicate supporting framework for highly cellular tissues (endocrine glands, lymph nodes, liver, bone marrow, spleen, smooth muscle).
- Composed mainly of Type III collagen, with a carbohydrate moiety that reduces Ag+ to metallic sliver = argyrophilic.
- Special stain: Silver impregnation to visualize.
- Thinner than type I collagen (Type III fibrils are 30-40 nm diameter; type I fibrils are ~200 nm diameter)
- made by <u>reticular cells</u> (<u>specialized</u> <u>fibroblasts</u>) and <u>vascular smooth</u> muscle cells

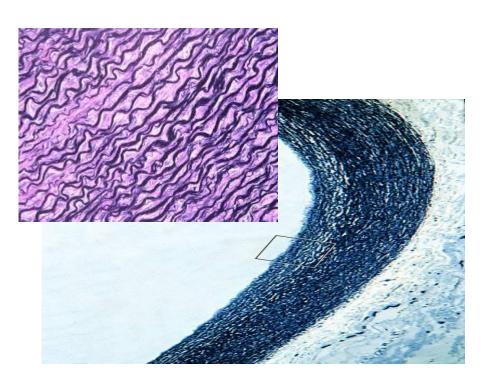
Elastic fibers

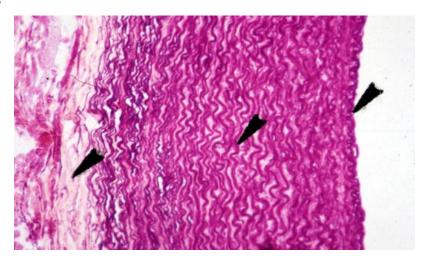

Characters:

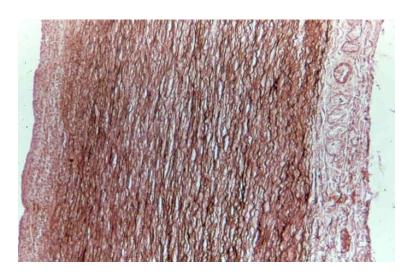
•These fibers contain protein, elastin that allows them to stretch and recoil like rubber bands. Because the **fresh** elastic fibers appear **yellow**, they are called **the yellow fibers**.

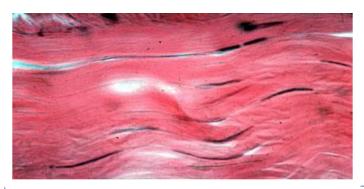
Histological features:

- •Elastic fibers may exist in two different forms:
- •Individual long and thin fibers that branch in the extracellular matrix.
- •In the wall of large blood vessels they form fenestrated parallel sheets
- •They stain weakly with H&E.
- •Special staining with **orcein stain** gives a brick-red color to elastic fibers, while staining with **V.VG stain** gives them a dark violet color.

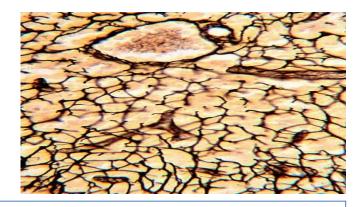

Network of elastin molecules can stretch and recoil like a rubber band




Elastic Fibers


Elastic fibers (yellow fibers): can be stretched to one and one-half times their length, but recoil to their initial length when released. Fresh elastic fibers appear yellow and are also called **yellow fibers.**

Stain: H&E, Orcein, VVG



Fibers

- The most numerous
- White if in great number (white fibers)
- Strong and flexible
- Fibers do not branch but bundles can do
- Formed of collagen protein
- Stain pink with eosin
- Types of Collagen Fibres
- Yellow if in great number (**Yellow** fibers)
- Elastic and stretchable
- Fibers can **branch** and unit
- Formed of elastin protein
- Stained weakly by H&E
- Stain brick red by orcein
- Stain dark violet with V.V.G stain.

- Thin branching
- Not stained by H&E
- Stained dark brown with silver stain
- Consist of type III collagen
- Supportive function

Highly cellular organ —> support
Site: liver, bone marrow, lymphatic
organ (spleen)

C.T. CELLS

Free cells = immigrating

Transient = (wandering) cells.

- ☐ stable, long-lived cell e.g.
- 1. UDMC
- Fibroblast , fibrocytes
- 3. Fat cell = adipocytes
- 4. Pigment cell

originate mainly in the bone marrow and circulate in the bloodstream.

- ☐ motile, short-lived cells e.g.
- 1. Macrophages
- 2. Plasma cell
- 3. Mast cell
- 4. White blood cells= Leucocytes

Undifferentiated Mesenchymal Cell

Histological features:

- ☐ They are stellate cells with few processes.
- ☐ They have euchromatic nuclei
- ☐ with faint basophilic cytoplasm.

Function: they are adult stem cells that can divide and differentiate into many types of CT

cells.

The most important thing in a cell that Will differntiate or divide is its nucleus

L.M.

Basophilic because of aminoacids

they are the most common cells in CT.

Histological features:

- By LM, fibroblast is a spindle-shaped branching cell, with deeply basophilic cytoplasm and large euchromatic nucleus with prominent nucleolus.
- By EM, its cytoplasm contains abundant rough endoplasmic reticulum and welldeveloped Golgi complex.

Function:

Because it's protein secreator

Fibroblasts, indicated by the suffix "blast" (means "forming"), are active protein-synthesizing cells that secrete the ground substance and the fibers of the matrix.

Fibrocytes

- After they synthesize the matrix, they become quiescent and are called fibrocytes. They assume their less active mode, indicated by the suffix "cyte".
- are smaller cells with fewer processes than the fibroblasts. By LM, the cell has a small elongate, heterochromatic nucleus and an eosinophilic cytoplasm. By EM, they have fewer rER and small Golgi.

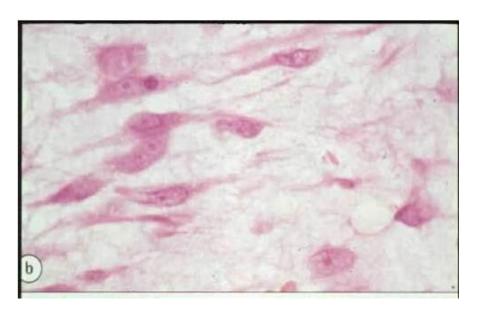
Function: maintenance of the CT matrix. However, if the matrix is injured, they can easily return to their more active state (fibroblast) to repair and regenerate the matrix.

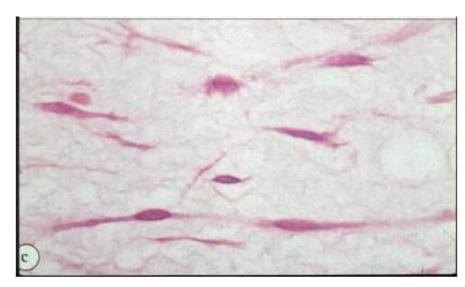
Fibroblasts

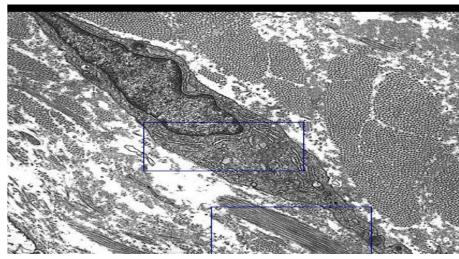
- the most common type
- Origin : from UDMC
- 2 types
- Young fibroblast= active
- Large in size
- •Fusiform with processes
- oval central paler nucleus
- **Basophilic cytoplasm**= numerous rER

Function:

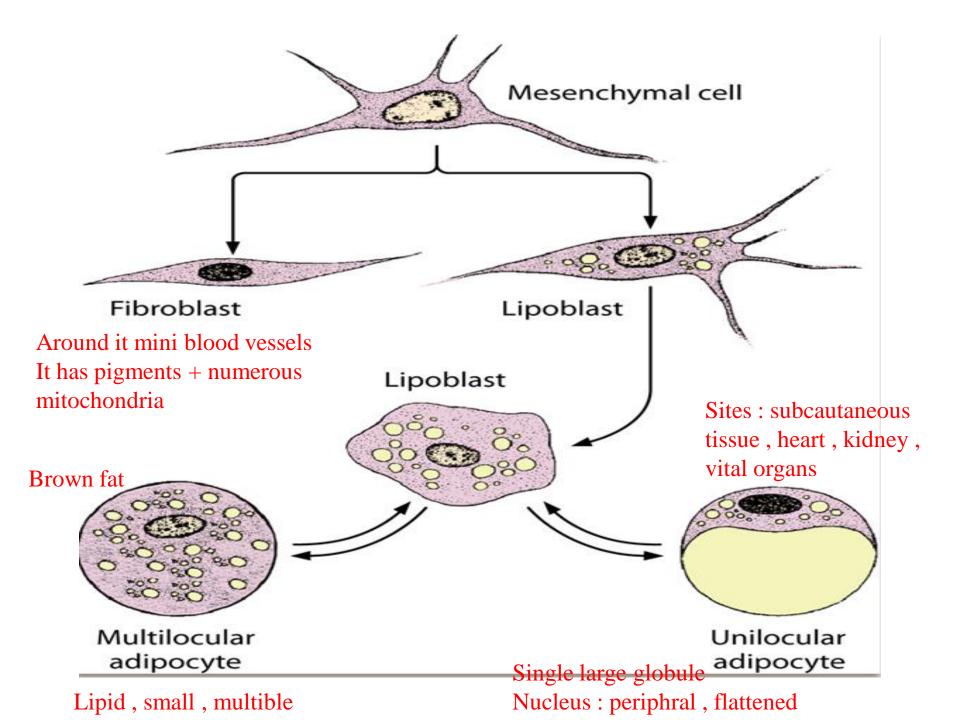
- Synthesize and secrete components of the ECM: fibers and ground substance.
- ☐ Synthesize growth factors.
- Rarely undergo cell division unless tissue is injured, which activates the quiescent cells.
- Play a major role in the process of wound healing and respond to an injury by proliferating and enhanced fiber formation.

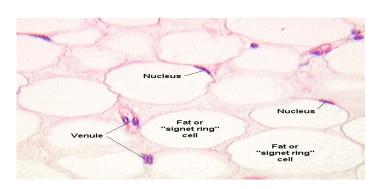

Fibrocytes

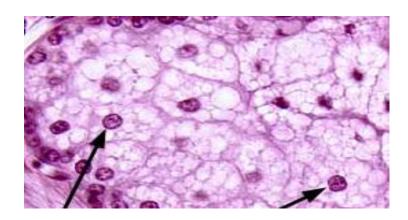

mature (Fibrocytes)


- **!inactive**
- Small in size
- •Fusiform smaller
- oval central darker nucleus
- acidophilic cytoplasm

Fibroblasts

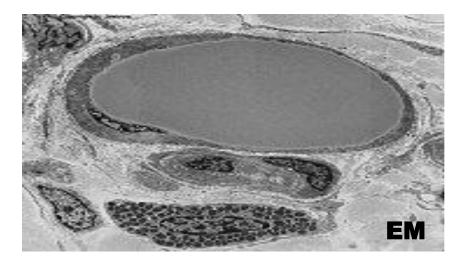

Fibrocytes

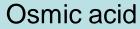

Fat Cell=Adipocytes= fixed cells


Histological features:

- •They are large cells, spherical when single or polyhedral in shape when they are closely-grouped.
- •In unilocular adipocytes, the cytoplasm is occupied by a single large lipid droplet that pushes the cytoplasm to a thin peripheral rim with peripheral flattened nucleus giving the "signet-ring" appearance.

 The multilocular adipocytes are polygonal and smaller than the unilocular adipocytes. Their cytoplasm contains a central rounded nucleus, numerous small lipid droplets and numerous mitochondria with abundant long cristae.

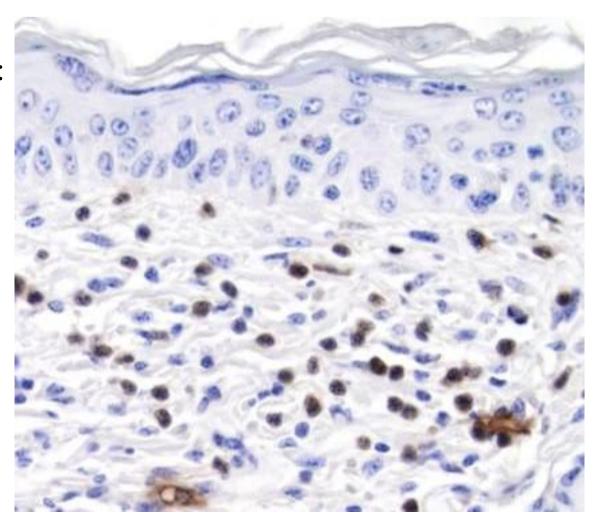

Fat dissolves when staining with H&E


Adipocytes

- Origin: UDMC
- ■large, spherical or polyhedral
- •The flattened nucleus
- •The cytoplasm only forms a very narrow rim around a large central lipid droplet.
- •Single or several lipid droplets
- •Adipocytes are long-lived cells. Their number is determined by the number of preadipocytes generated during foetal and early postnatal development.

Lipid storage/mobilisation is under:

- •nervous (sympathetic) hormonal (insulin) control.
- •Function:
- Storage of lipid
- Production of energy
- •endocrine function they secrete the protein **leptin** which regulate appetite with feedback about the bodies fat reserves.



Pigment Cells= fixed cells

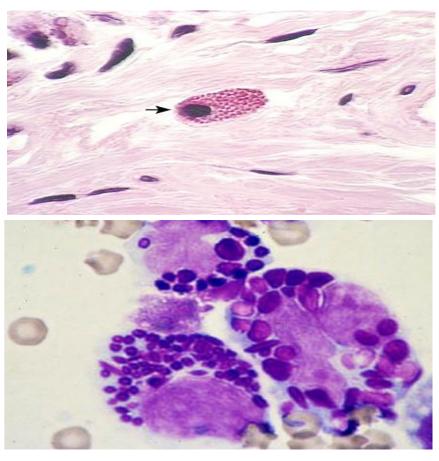
- branched cells
- Contain pigment granules:Melanin (melanocytes)

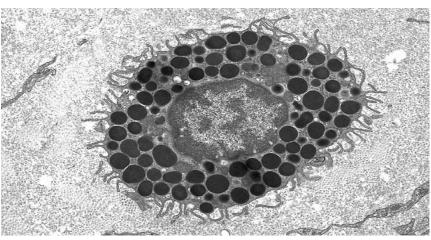
Function:

• gives the color of skin and iris of the eye

Mast Cells

- •Origin: from haemopoetic stem cell in B. M Two types:
- □ Connective tissue mast cells are found in skin (dermis) and peritoneal cavity
- mucosal mast cells are in the mucosa of the digestive and respiratory tracts.
- ☐ Contain basophilic granules
- **■** (Metachromatic staining)


when stained with toluidine blue, the granules bind the dye and change its color to red.


Function:

secretion of histamine and heparin

Allergy

coagulation

Mast Cells

Histological features:

- By LM, mast cell is a large CT cell. Its cytoplasm is full of basophilic granules that may obscure the nucleus. Its nucleus is rounded and central in position.
- A distinctive staining feature of mast cells is "metachromasia" which means that certain basic stains give to their granules a color other than that of the dye itself e.g. toluidine blue stain gives a purple color instead of blue, due to the chemical composition of the secretory granules.

Because of heparin sulfate

 By EM, their cytoplasm contains numerous secretory granules.

Function: they initiate allergic and local inflammatory responses by release (degranulation) of their granules which contain; the anticoagulant *heparin* and *histamine* which promotes increased vascular permeability and smooth muscles contraction.

Lactic shock:

hypotension

1- mast cells: stimulated while allergy the excrete all granules in one time2- histamine: when granules excrete once it makes periphral vasodilatation thus

بتطلع زي ماهي

- White blood cells (leukocytes): they include neutrophils, eosinophils, basophils, monocytes and lymphocytes.
- * RBCs live only in blood stream, if it go out from it, phathological circulation (extravasated)
- Macrophages: they are derived from the monocytes that migrate from bloodstream into CT.
- *Histological features:* they are large, irregular cells with eccentric kidney-shaped nucleus. The cytoplasm shows numerous lysosomes.
- Function:
- They are phagocytic cells; macrophages engulf a broad variety of foreign materials including bacteria, dead cells and dust particles.
- Monocyte's name according to its site:

 Connective tissue (histocyte,tissue macrophage) / liver (kofercell) / bone (osteoclast)

 Brain (microglia)

Macrophages= Histocytes

Origin: From blood monocytes Three from the second monocytes

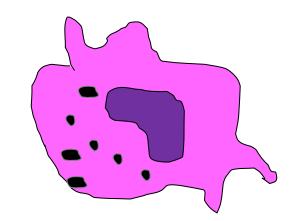
Three types:

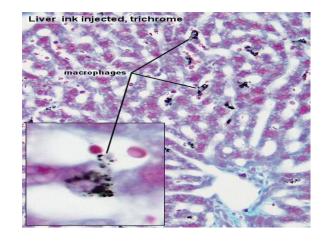
•Resident : resting

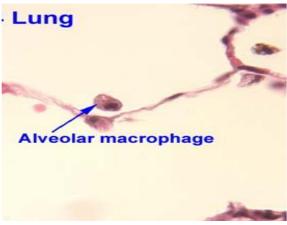
Elicited: moving to a stimulus

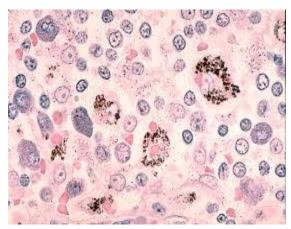
Activated: active in phagcytosis:

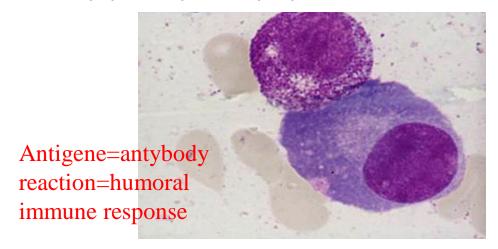
-pseudopodea


-Kidny shaped eccentric nucleus-


-large number of lysosomes


Function: Phagocytosis


من انواع WBC الها مدى للحياة وبتعيش نص الوقت في الدم والنص التاني بالخلايا وبكل مكان الها اسم معين

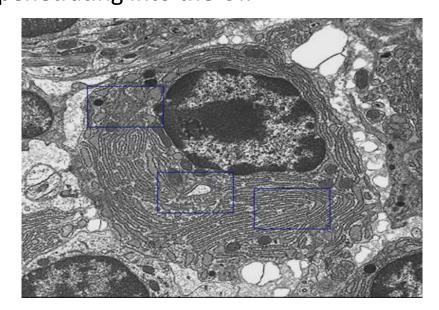


Origin: they are derived from

B lymphocytes that enter the CT.

Histological features:

- By LM, they are large oval cells, with basophilic cytoplasm. The nucleus is spherical and eccentrically-placed. The chromatin of the nucleus is arranged giving the nucleus a cartwheel appearance.
- The prominent juxtanuclear Golgi apparatus appears unstained "negative Golgi image" against the deeply-basophilic cytoplasm.



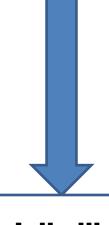
Plasma Cells

Origin: activated B lymhocyte

 By EM, the cytoplasm shows closely-packed cisternae of rER together with large juxtanuclear Golgi complex. Antibodies protein

Function: they are responsible for synthesis of antibodies against bacteria and foreign proteins penetrating into the CT.

CLASSIFICATION OF CONNECTIVE TISSUE


I- Embryonic connective tissue it includes:	Classification depends on the proportion of cells to fibers, and or the arrangement, and the types of
☐Mesenchymal CT.	fibers.
☐Mucoid CT.	Three categories can be defined:
	II- Connective tissue
II- Specialized	proper: it includes:
connective tissue; it	☐ Loose areolar connective tissue.
ncludes:	☐ Dense irregular connective tissue
Cartilage.	☐ Dense regular connective tissue.
☐Bone.	☐ Elastic connective tissue.
□Blood.	☐ Reticular connective tissue.
	☐ Adipose connection tissue.

Classification of C.T.

Depend on ground substance

- ☐ Embryonic C.T
- ☐ Mucoid C.T.

Jelly like C.T. Proper

- Loose C.T.
- Dense C.T.

Modified types

- ❖ Blood =fluid
- ❖ Cartilage= firm
- **❖** Bone = hard

Embryonic connective tissue

Mesenchymal CT

Site: it is found in embryo.

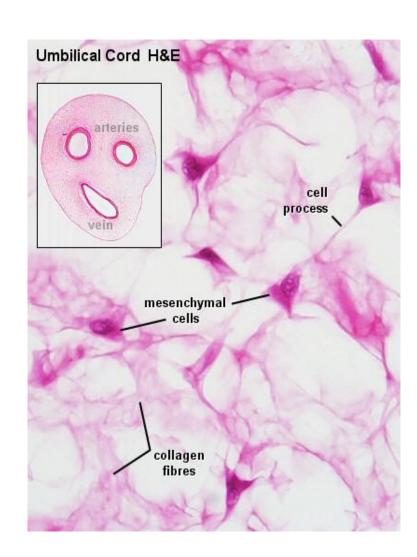
Histological structure: it consists of:

- Undifferentiated mesenchymal cells (UMCs) with their processes come in contact with each other forming a network.
- ➤ A gel-like, amorphous ground substance.
- Scattered reticular fibers.

Mucoid CT

Site: it is found in the umbilical cord and pulp of growing teeth.

Histological structure: It consists of:


- Abundant ground substance (Wharton's jelly) composed mainly of hyaluronic acid. It appears homogeneous and basophilic.
- ☐ Spindle-shaped UMCs that are widely separated and fibroblasts.
- ☐ Unapparent fine collagen fibers that have the same refractive index as the matrix.

Mucoid C.T. = Embryonic C.T

- Mucoid connective tissue (or mucous tissue) is a type of connective tissue found during fetal development.
- It is composed mainly of ground substance with few cells & fibers
- It is most easily found as a component of Wharton's jelly.
- **Cells**: UDMC, Fibroblasts
- Fibers: present but not apparent collagen type II
- · Ground substance: Abundant

Sites:

- Mucous connective tissue forms the umbilical cord.
- The <u>vitreous of the eyeball</u> is a similar tissue.

Connective tissue proper

Loose: connective tissue is relatively cell rich, soft.

It is also rich in vessels and nerves.

Loose connective tissue may occur in some special variants:

- LACT: connective tissue
- **Reticular**: connective tissue
- Adipose: tissue.

Dense C.T.: connective tissues are completely dominated by fibres. They are subdivided according to the arrangement of the fibres in the tissue.

Dense irregular: connective tissue the fibres do not show a clear orientation within the tissue but instead form a densely woven three-dimensional network (dermis).

Dense Regular

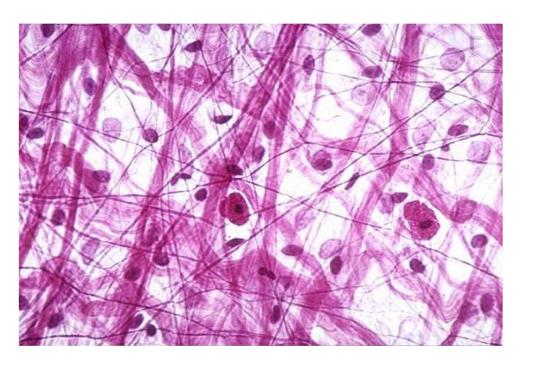
- 1. White fibrous C.T.
- 2. Elastic C.T.

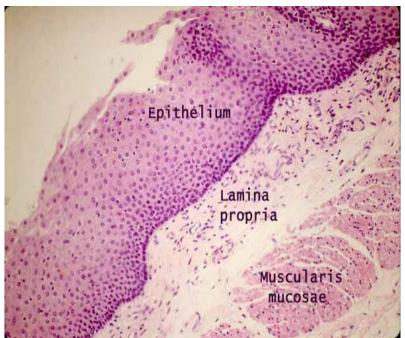
Connective tissue proper

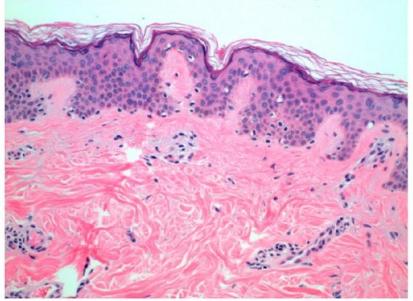
Loose areolar CT:

Site: it is the most widely distributed connective tissue in the body. It binds body parts together while allowing them to move freely over one another. It contains many small blood vessels coursing through this tissue.

- Loose CT is found in the following sites:
- It is present beneath the epithelium in all mucous membranes forming the lamina propria.
- It forms the papillary layer of dermis which attaches the skin epidermis to underlying structures.
- It surrounds glands, small blood vessels, and nerves.

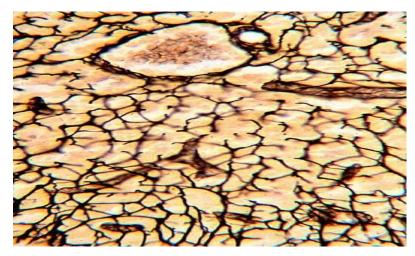

Histological structure

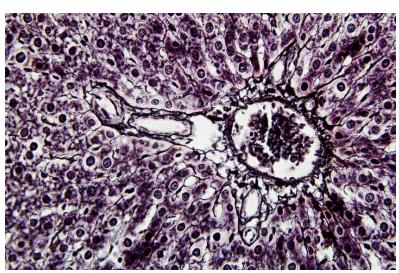

- All types of fibers; collagen, elastic and a small proportion of the reticular fibers.
- All types of connective tissue cells with predominance of fibroblasts and macrophages.
- Good amount of ground substance.


Function:

- a. Supports and binds other tissues (by its fibers).
- b. Holds body fluids and provide nutrition (by its ground substance).
- c. Defends against infection (by its white blood cells, plasma cells, mast cells and macrophages).

Loose Areolar C.T.

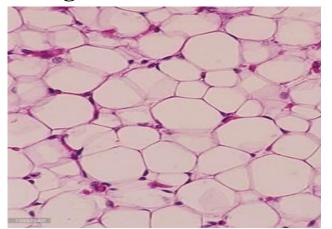




Reticular CT:

- Histological structure:
- Reticular fibers, forming a network.
- Reticular cells, these are the fibroblasts of reticular connective tissue, that synthesize the reticular fibers.
- Site & function: reticular tissue is limited to certain sites.
 It forms the supporting stroma for:
- Hemopoietic tissue in the bone marrow.
- Lymphoid tissue in lymph nodes and spleen.
- Hepatocytes in liVer.

Liver (silver stain)

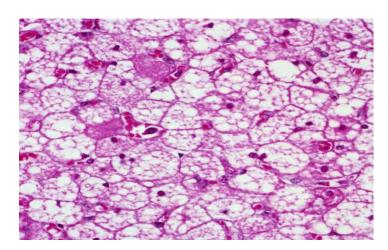

Adipose C.T.

Yellow fat

- Unilocular fat cells
- C.T. fibers: collagenous F.
- rich in blood supply
- Carotenoids

Sites:

- Subcutaneous tissue
- **Around vital organs**

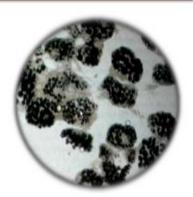


Unilocular adipose C.T. Multilocular adipose C.T. **Brown fat**

- Multilocular fat cells
- C.T. fibers collagenous F.
- rich in blood supply
- Many blood vessels, numerous mitochondria, cytochrome pigment

Sites:

Back & neck of newborne



Adipose C.T.

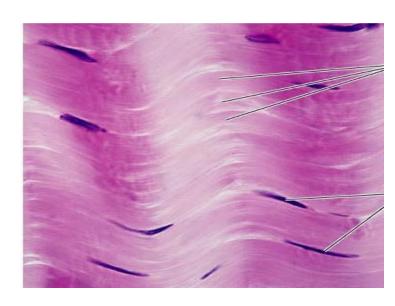
2. Lipid

- Frozen sections are used
- Sudan III → orange colour
- Sudan black → black colour
- Osmic acid → black colour

synthesismatters.blogspot.com.br

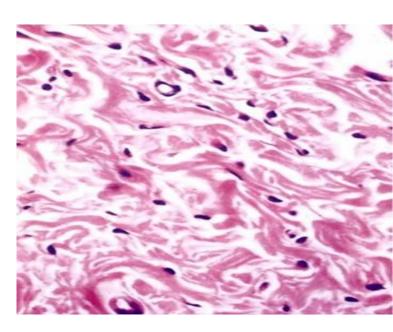
Function:

- Storage of energy in the form of triglycerides.
- Subcutaneous adipose tissue shapes the body.
- Pads of fatty tissue in palms and soles act as shock absorber.
- Thermal insulation of the body; due to the poor heat conduction of adipose tissue.
- Fixation of the vital organs as heart and kidney, thus keeping them in position.

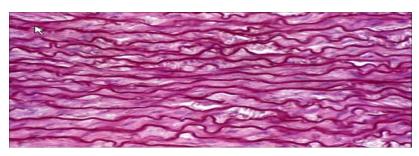

Dense regular C.T.White Fibrous C.T.

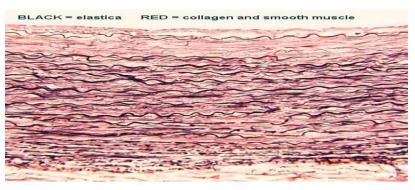
Histological structure (Figure 84):

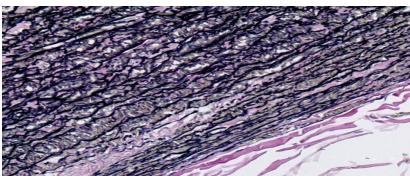
- Closely-packed wavy bundles of collagen fibers running in the same direction and parallel to the direction of pull.
- Rows of fibroblasts (*tendon cells*) with flattened nuclei aligned between the collagen bundles.
- Little amount of ground substance.


Sites & function:

- Unlike areolar CT, this tissue is poorly vascularized. This type of tissue forms white flexible structures with great resistance to pulling forces wherever it is exerted in a single direction. It is found in:
- Tendons, which attach muscles to bones.
- Ligaments, which bind bones together at joints.
- sclera of the eye


Dense Irregular CT:


- Histological structure:
- Thick bundles of collagen fibers arranged irregularly (running in more than one plane).
- Little amount of ground substance with few fibroblasts.
- Sites & function: this type of tissue forms sheets in body areas where tension is exerted from many different directions.
- It is found in the *reticular layer of dermis* of the skin.
- It forms the capsules of fibrous joints.
- It forms the capsules of body organs e.g. kidney, spleen, lymph nodes and liver.



Elastic C.T.

- Histological structure: the elastic fibers predominate; they run in all directions, also they may form fenestrated membranes.
- Site & function: this tissue is present where flexibility and elastic recoil are needed; it is found in:
- Elastic laminae of arteries.
- True vocal cords.
- Few ligaments in the body are very elastic such as ligamenta flava and ligamenta nuchae connecting adjacent vertebrae.

CONNECTIVE TISSUE

- Connective tissues are the most abundant of the primary tissues.
- The cells of the connective tissues are far apart, separated by an abundant amount of extracellular material, also called extracellular matrix

Function:

- 1. Binding, support and packaging:
- 2. Protection, defense and repair:
- 3. Insulation: Fat cells or adipose tissue, is a connective tissue which not only cushions body organs but also insulates them and provides reserve energy fuel.
- 4. Transportation:
 Blood is a connective tissue and it carries and delivers oxygen and nutrient to tissues.

7	CLASSIFICATION OF CONNECTIVE TISSUE PROPER 1. Types and number of cells 2. Types, numbers and arrangement of fibers 3. Amount of Ground Substance								
CLASSES CONTENTS	MESENCHYME	MUCOID (Transitional)	LOOSE FECT	RETICULAR	ADIPO SE	DENSE FECT DS. IRREG. DS. REGUL.			
CELLS	MESENCHY- MAL	FIBROBLAST (primarily)	ALL TYPES: FIXED and WONDER. (highly cellular tiss.)	TWO TYPES: RETICULAR cells and (fixed) MACROPHS.	FAT CELLS and All others may be present	FEW: FIBROBL. and some MACROPH.	ONLY: FIBROBL. (between fibers)		
FIBERS	NONE	Very fine COLLAGEN	COLLAGEN some ELASTIC & RETICULAR (Irregularly arranged)	RETICULAR	RETICULAR and COLLAGEN	COLLAGEN (Irregularly arranged)	Parallel COLLAGEN in tendons & white ligaments and ELASTIC in yellow liga.		
GROUND SUBSTANCE	AMORPH(OUS, JELLY-LIF	KE		<u> </u>				

#