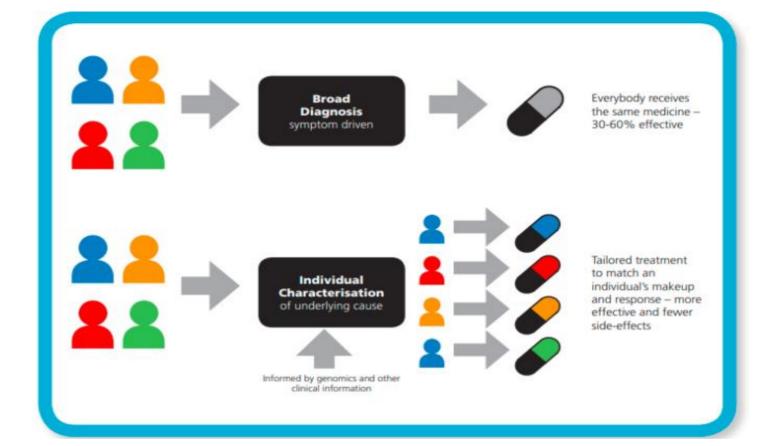

Pharmacogenetics

Dr. Mohammed Al-Sbou Professor of Clinical Pharmacology Faculty of Medicine-Mutah Uni


1

- Human beings are 99,9% genetically identical
- The human genome project has led to an explosion of genetic information that is freely available to identify polymorphisms that may determine drug response

Advances in molecular genetics and genotyping technologies during the last two decades have led to identification of many polymorphisms in phase I and phase II drug metabolising enzymes, drug targets, and in drug transporters

Individual Variation in Response to Drugs

- How individuals in a population are expected to respond to a fixed dose of drug?
- Inter-individual variability:
 - Some show less than usual response
 - Most show usual response
 - Others show more than usual response

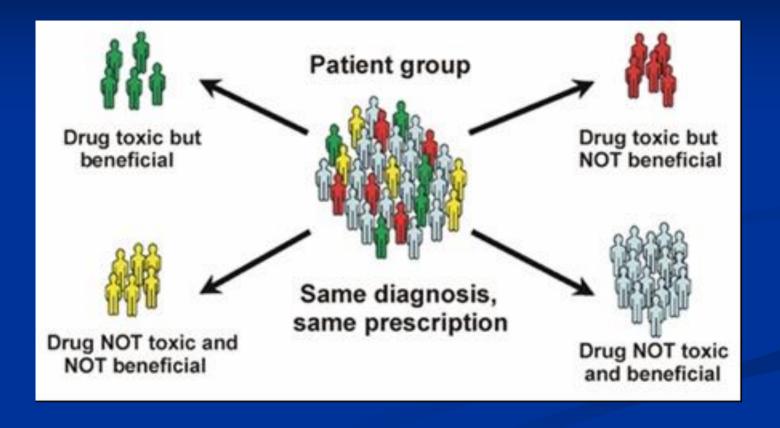
Factors Determine Response to Drugs

Environmental

(age, sex, race, concomitant diseases, diet, smoking, alcohol)

<u>Genetic</u> (polymorphisms drug metabolising enzymes, receptors, drug targets)

Pharmacogenetics/Pharmacogenomics


- Pharmacogenetics: is study of variation in drug response due to heredity & is used in relation to genes determining drug metabolism
- Pharmacogenomics is a more general term; it refers to research area that comprises all genes in the human genome that may determine drug response

Benefits of


Pharmacogenetics/Pharmacogenomics

- The concept <u>"The right medicine to the right patient</u>" is the basis of pharmacogenetics (personalised or individualised medicine)
- Ultimate goals are to improve clinical therapeutic outcome by:
 - Increasing drug efficacy
 - Increasing safety of drugs e.g. reducing incidence of ADRs

Personalised or Individualised Medicine

Pharmacogenomic approach to personalized medicine. Drug therapy is chosen for each patient based on their <u>particular genetic profile</u>

- Polymorphisms can occur in any gene that encode:
 - Drug metabolising enzymes
 - Drug transporters
 - Drug targets and receptors

<u>Genetic polymorphisms of drug</u> <u>metabolising enzyme genes</u>

- The majority of phase I and phase II drug metabolising enzymes are polymorphic
- The cytochrome P450 (CYP) enzymes are the most important group of phase I enzymes
- Polymorphisms in cytochrome P450 genes can cause enzyme products with abolished or increased enzyme activity

Cytochrome P450 enzymes

 All genes that encode for families 1-3 are polymorphic & their capacity to metabolise drugs depends on the functional importance and frequency of variant alleles

CYP450 Enzymes

CYP2D6

CYP2C19

14

CYP2D6

- CYP2D6 contributes to metabolism of large of medications about 25% of all drugs, including:
 - Antidepressants (TCAs, SSRIs)
 - Antiarrythmics
 - Analgesics

CYP2D6 Phenotypes

- Poor metabolisers(PM): lack functional enzyme
- Intermediate metabolisers (IM): carry two alleles that cause reduce activity
- Extensive metabolisers (EM): have two normal alleles
- Ultra-rapid metabolisers (UM): multiple gene copies

- Poor metabolisers can experience adverse effects when treated with standard dose
- Ultra-rapid metabolisers require high doses of drugs

GeneSight [®] COMBINATORIAL	Psychotropic PHARMACOGENOMIC TEST	-tgenesight	
Patient, Sample DOB: 7/22/1984 Order Namber: 219 Report Date: 8/5/20 Dinician: Sampl Reference: 1480C	20 e Clinician		Questions about report interpretation? Contact our Madical Information team 555.891.9415 83 medinto@essuresheath.com
Geferense: 1456C	PATIENT GENOTYPE	S AND PHENO	TYPES
Ś.	PHARMACOK	NETIC GENES	PK
CYP1A2 1/*1	Extensive (Normal) Metabolizer	CYP2D6 *10/*10	Poor Metabolizer
This genotype is most consistent with the extensive (normal) metabolizer phenotype.		CYP2D6*10 allele enzyme activity: Reduced CYP2D6*10 allele enzyme activity: Reduced	
CYP2B6	Extensive (Normal) Metabolizer	This genotype is most consistent with the poor metabolizer phenotype. This patient may have reduced enzyme activity as compared to individuals with the normal phenotype.	
	tyme activity: Normal tyme activity: Normal	CYP3A4	Extensive (Normal) Metabolizer
This genotype is most consistent with the extensive (normal) metabolizer phenotype.		CYP3A4*1 allele enzyme activity. Normal CYP3A4*1 allele enzyme activity. Normal	
CYP2C19 17/*17	Ultrarapid Metabolizer	This genotype is m metabolizer phenot	ost consistent with the extensive (normal) type.
CYP2C19*17 allele enzyme activity: Increased CYP2C19*17 allele enzyme activity: Increased		UGT1A4	Extensive (Normal) Metabolizer
This genotype is most consistent with the ultrarapid metabolizer phenotype. This patient may have increased enzyme activity as compared to individuals with the normal phenotype.		UGT1A4*1 allele enzyme activity: Normal UGT1A4*1 allele enzyme activity: Normal	
CYP2C9 Intermediate Metabolizer		This genotype is most consistent with the extensive (normal) metabolizer phenotype. The patient is expected to have normal enzyme activity.	
CYP2C9*1 allele enzyme activity: Normal CYP2C9*2 allele enzyme activity: Reduced		UGT2B15 *2/*2	Intermediate Metabolizer
This genotype is most consistent with the intermediate metabolizer phenotype. This patient may have reduced enzyme activity as compared to individuals with the normal phenotype.		UGT2B15*2 allele enzyme activity: Reduced UGT2B15*2 allele enzyme activity: Reduced	

This genotype is most consistent with the intermediate metabolizer phenotype. This patient may have reduced enzyme activity as compared to individuals with the normal phenotype.

Pharmacokinetic Genes

Pharmacokinetic genes provide information on the metabolism of medications.

Activate Will

GeneSight® Psychotropic COMBINATORIAL PHARMACOGENOMIC TEST

Patient, Sample

SLC6A4

\$/\$

DOB: 7/22/1984 Order Number: 219 Report Date: 8/5/2020 Clinician: Sample Clinician Reference: 1456CIP

PATIENT GENOTYPES AND PHENOTYPES

PHARMACODYNAMIC GENES

Reduced Response

HLA-8*1502 Not Present

stabilizers.

Lower Risk

PD

aenesight

Questions about report interpretation?

Contact our Medical Information team

855.891.9415

51

This patient does not carry the HLA-8*1502 allele or a closely

related *15 alleles suggests lower risk of serious dermatologic

Stevens-Johnson syndrome (SJS) when taking certain mood

related *15 allele. Absence of HLA-B*1502 and the closely

reactions including toxic epidermal necrolysis (TEN) and

This patient is homozygous for the short promoter polymorphism of the serotonin transporter gene. The short promoter allele is reported to decrease expression of the serotonin transporter compared to the homozygous long promoter allele. The patient may have a decreased likelihood of response to selective serotonin reuptake inhibitors due to the presence of the short form of the gene and may benefit from medications with an alternative mechanism of action.

HTR2A Increased Sensitivity G/G

This individual is homozygous variant for the G allele of the -1438G>A polymorphism for the Serotonin Receptor Type 2A. They carry two copies of the G allele. This genotype has been associated with an increased risk of adverse drug reactions with certain selective serotonin reuptake inhibitors.

HLA-A'3101 Higher Risk T/T This patient is homozygous for the T allele of the rs1061235 A>T polymorphism indicating presence of the HLA-A*3101 allele or certain HLA-A*33 alleles. This genotype suggests a higher risk of serious hypersensitivity reactions, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN),

maculopapular eruptions, and Drug Reaction with Eosinophilia and Systemic Symptoms when taking certain mood stabilizers.

Pharmacodynamic Genes

Pharmacodynamic genes provide information on how DNA may impact response to some medications.

Depression

- Tricyclic antidepressants are metabolised by CYP2D6
- Disposition of nortriptyline is related to number of active CYP2D6 alleles and
- Dose required to obtain same plasma drug concentrations varies between subjects with different CYP2D6 phenotypes

- Ultra-rapid metabolisers needed a 10-fold larger dose of nortriptyline than poor metabolisers to achieve the same plasma concentration
- Ultra-rapid metabolisers require 500 mg of doses compared to 50 mg in poor metabolisers

- Genetic polymorphisms of CYP2D6 gene may be associated with ADRs and clinical response to antidepressants
- 30% of patients with ADRs to antidepressants were PMs
- High incidence of UMs among non-responders (20%)

CYP2C9

- **CYP2C9** metabolises a wide range of drugs
- Including drugs with narrow therapeutic indices such as:
 - Warfarin
 - Phenytoin
 - Non-steroidal anti-inflammatory drugs (NSAIDs) including ibuprofen, diclofenac and celecoxib

Warfarin and Bleeding

- Warfarin is one of the most widely prescribed oral anticoagulant drugs
- It is used for:
 - Prophylaxis and treatment of venous thromboemolism
 - Treatment of deep vein thrombosis (DVT)
 - Atrial fibrillation (AF)
 - In patients with prosthetic heart valves

Warfarin and Bleeding

- The main complication of warfarin therapy is haemorrhage
- Genetic polymorphisms in CYP2C9 gives rise to variants with altered enzymes activity
- Two allelic variants CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu) show 12% and 5% of enzyme activity of the wild type CYP2C9*1 allele, respectively, and are associated with decreased warfarin dose requirements & increased risk of bleeding

Peptic Ulcer

- Proton pump inhibitors (PPIs) are used for treatment of gastric acid related diseases such as peptic ulcers, gastro-esophageal reflux disease (GERD) & in combination with antibiotics (amoxicillin & clarithromycin) for eradication of *Helicobacter pylori* (Hp)
- **CYP2C19** metabolises several PPIs including **omeprazole** and **lanzoprazole**
- Plasma concentrations of **omeprazole**, depend on patient's **CYP2C19 phenotype**

AmpliChip CYP450 Array

The AmpliChip CYP450

Test provides comprehensive detection of gene variations including **deletions and duplications** for the **CYP2D6** and **CYP2C19** genes

Genetic Polymorphisms of Drug Metabolising Enzyme Genes

- With respect to phase II enzymes, the most important polymorphisms occur in *N*acetyltransferase-2 (NAT-2) and thiopurine methyltransferase (TPMT)
- NAT-2 is involved in the metabolism of isoniazid and sulphamethoxazole

28

Acetylation

- Most individuals are either rapid or slow acetylators, but proportion varies between races
- The percentage of <u>slow acetylators</u>:
 - 90% in North African
 - 50% in Caucasian
 - 10% in Asian populations

Thiopurine S-methyltransferase (TPMT)

- TPMT catalyzes methylation of thiopurine drugs such as 6-mercaptopurine & azathioprine
 These drugs are commonly used in treatment of acute lymphoblastic leukaemia (ALL), autoimmune diseases, inflammatory bowel diseases, in organ & tissue transplantation
 Clinical testing for TPMT genetic polymorphisms
- is available

It has been shown that:

- 90% of population exhibit high TPMT activity
- 10% show intermediate activity
- 0.3% have low or absent enzyme activity

Genetic Polymorphisms in Drug Transporters

- Transporters are membrane proteins that play crucial role in absorption, distribution & elimination of drugs
- Genetic polymorphisms can occur in transport proteins & may contribute to inter-individual variation in drug response
- MDR1 (multi-drug resistant) P-glycoprotein-Digoxin
- Serotonin transporter-antidepressant response

Genetic Polymorphisms in Drug targets and Receptors

- Drug target genes including those coding for receptors, ion channels and specific enzymes are subject to genetic polymorphisms
- B2-adrenergic receptor: B2 agonist (salbutamol)
- Angiotensin converting enzyme (ACE): ACE inhibitors (lisinopril)
- Vitamin K epoxide reductase complex (VKORC): Warfarin

Practical Points

- Genetic is an important factor responsible for failure to therapy & occurrence of adverse drug reactions
- The goal of PGx is to maximize efficacy & minimize toxicity, based on individual's genetic composition
- Individual variation in response to drug (some may benefit, other fail to respond to treatment, others may develop adverse effects)