

STROKE VOLUME & CARDIAC OUTPUT

- Remember that : The **stoke volume** (**SV**) = EDV – ESV .

= input – output .

* We can imagine that we have a syringe :

- If we fill it with blood , (End diastolic volume "EDV") .

- If we pump it to get the blood out (systole).

- we can calculate the remaining blood in syringe by stroke volume.

* Stroke volume is one of the main component of frank-starling mechanism ...

* The myocardic muscle must do (<u>stretching</u>) to be sustainable the force of pumping of the blood .

<u>stretching</u> : The cross bridge between *actin&myosin* keep away from each other to allow another *actin* liked the bridge .

The summary of this mechanism :

1. The amount of blood in the **Right** side should properte with amount of blood in the **Left** side. 2. We should make sure that there is equality between input and output (in proportion to the work of the heart " relax, exercise ".

.IDE : .

Factors affecting SV

Exercise

- Prolonged aerobic exercise training may also increase stroke volume .
- Reduced heart rate prolongs ventricles end-diastolic volume .

Preload

- The degree to which the ventricles are stretched prior to contracting.
- An increase in the volume or speed of venous return will increase preload .

Afterload

- Commonly measured as the aortic pressure during systole .
- Not usually affecting stroke volume in healthy individuals .
- Increased afterload will hinder the ventricles in ejecting blood, causing reduced stroke volume.
- Increased afterload may be found in aortic stenosis and arterial hypertension.

* Factor affecting SV :

1. **Prelooad** : An <u>increase</u> in the venous return from the **Vena cava** to the **Right** side of thE **Atrium** will increase the **EDV**.

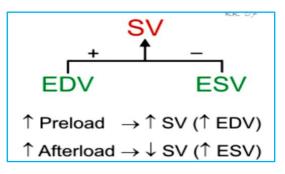
$(SV) = EDV - ESV \rightarrow So that:$

► The <u>decreasing</u> of amount of blood from the venous part will <u>decrease</u>**SV** The amount of blood $\downarrow \rightarrow EDV \downarrow \rightarrow SV \downarrow$ (related to the equation) \rightarrow (directly)

2. Afterload :

* **ESV** $\uparrow \rightarrow \rightarrow$ **SV** $\downarrow \rightarrow \rightarrow$ **Afterload** . \rightarrow (indirectly)

 \blacktriangleright An increase of blood in the **Left** side of the heart **ESV** \uparrow , **SV** \downarrow .


* Normally , venous return increases the blood volume into the Heart whenexercising.

As the normally exercising, the blood volume increase :

► venous return of blood \uparrow EDV \rightarrow \uparrow \rightarrow SV \uparrow .

Afterload there are NO increasing in the **ESV** at normal situations ((in contrast of the preload)) \longrightarrow If we have a kind of disease as (aortic stenosis) the blood will remain on the **Left** side of the Heart because of narrowing in the aortic value \longrightarrow **ESV** \uparrow .

Or , if we have any kind of hypertension (for any reason) $\rightarrow \text{ESV} \uparrow \rightarrow \text{SV} \downarrow$.

SLIDE

Ventricular volumes

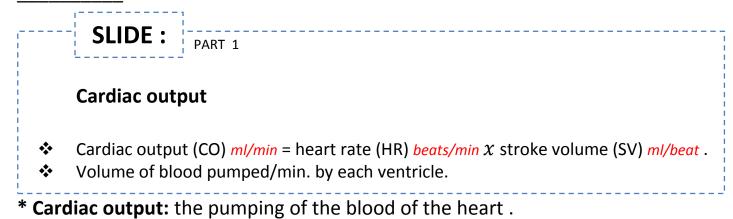
Stroke volume

In a healthy 70-kg man, ESV is approximately 50 mL and EDV is approximately 120mL, giving a difference of 70 mL for the stroke volume.

SV = EDV - ESV

Ejection fraction (EF)

- Volumetric fraction of blood ejected from a heart with each contraction (heartbeat).
- EF is widely used as a measure of the pumping efficiency of the heart and is used to classify heart failure types.
- The EF of the right heart, or right ventricular ejection fraction (RVEF), is a measure of the efficiency of pumping into the pulmonary circulation .
- The EF of the left heart (LVEF) is an indicator of the effectiveness of pumping into the systemic circulation .

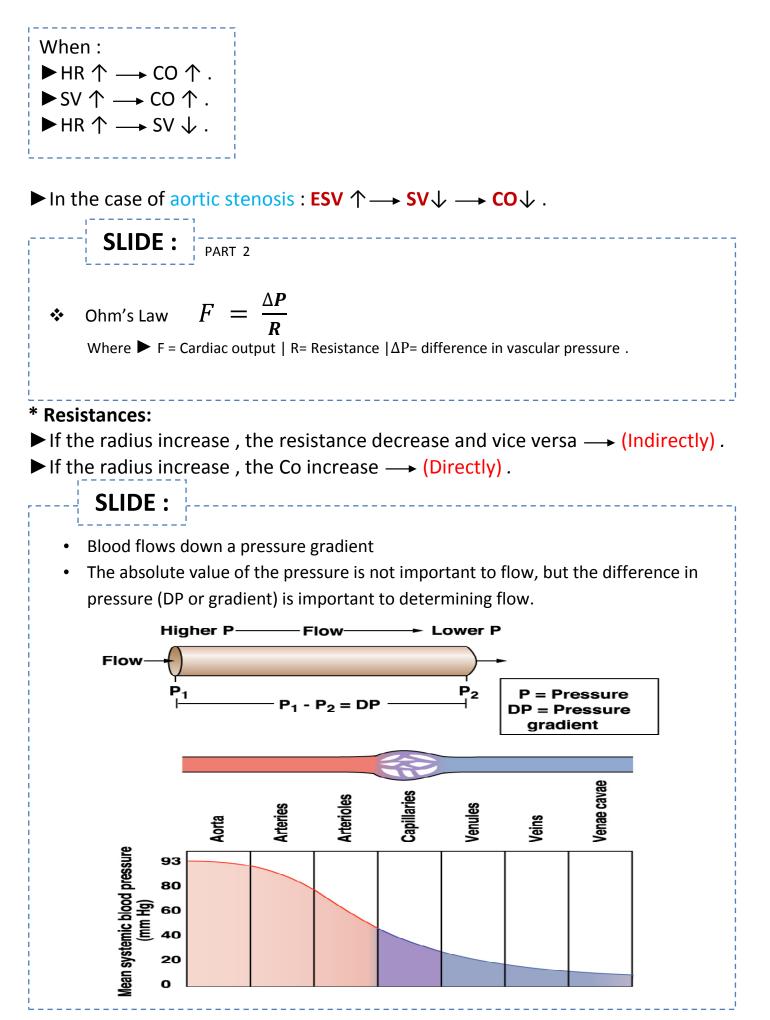

$$EF(\%) = \frac{SV}{EDV} x100$$

* Ejection fraction (EF) :

Eco cardio graph (Heart examination), then using ultra sound we can know exactly the amount of blood —>using this ratio of blood we can calculate the EF.

*Clinically, the experts use echocardiogram to classify heart failure types. failure: the myocardium of the heart not able to pump enough blood which lead to decrease blood volume.

*Arrhythmia: problems on muscle of the Heart , in the valves or in the electricity of the heart .


(Volume of blood pumped/minute)

► The amount of blood that the person need in relaxation **differ** of it in any environmental condition .

***Relaxation** — The cardiac output equal 5 liter per day .

* According to the cardiac output equation:

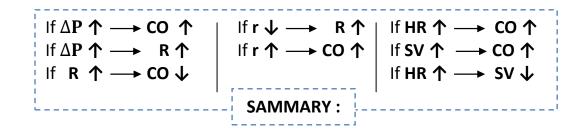
Co(*ml/min*)= **HR**(*beat/min*) x **SV**(*ml/beat*)

* The *highest* pressure is in the Aorta , and the *lowest* is in the vena cava . So, if we calculate ΔP it will be about 93.

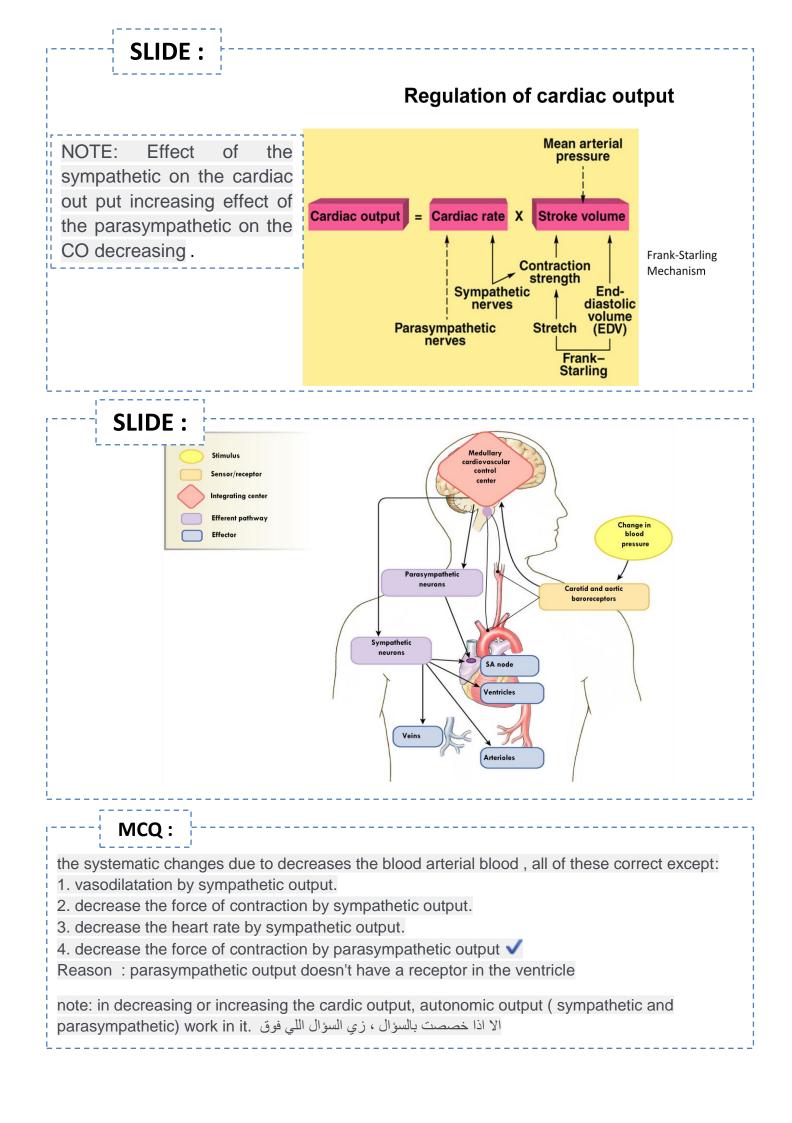
* The pressure in vena cava drops near to ZERO.

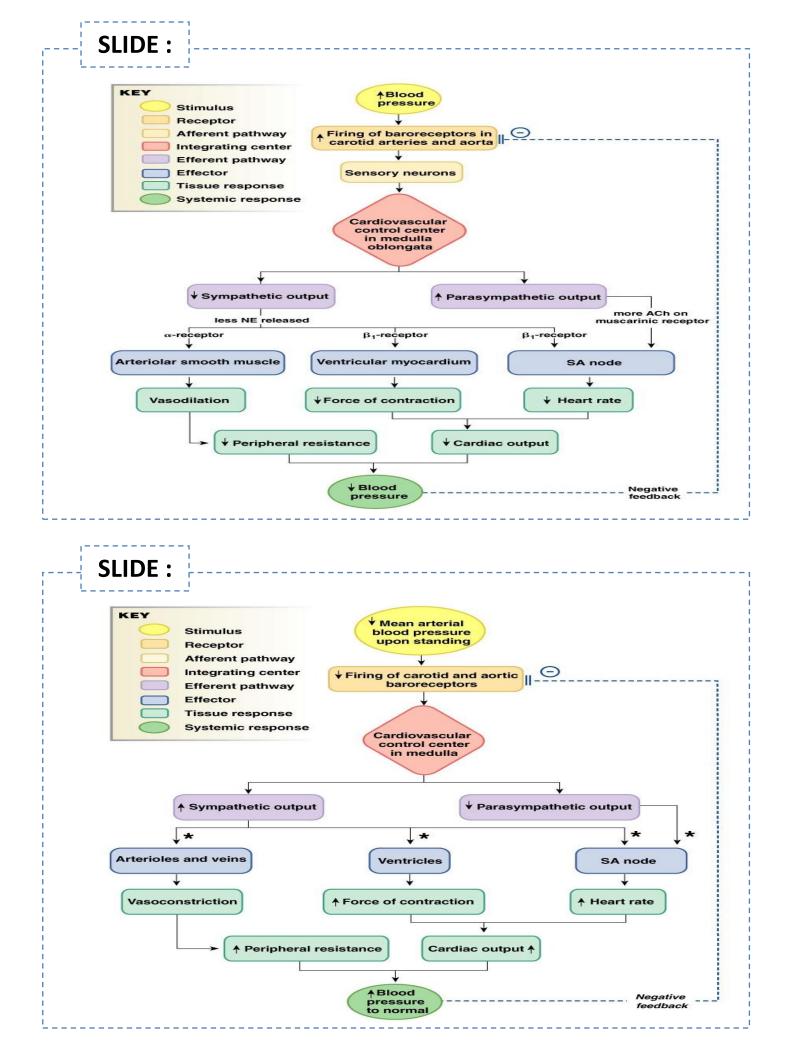
 $\Delta P = p1 - p2$ = 93 - 0 = 0

When: $\Delta P \uparrow \longrightarrow CO \uparrow .$ $\Delta P \uparrow \longrightarrow R \uparrow .$ $R \downarrow \longrightarrow Radius (r) \uparrow$


* In the healthy status, if there are any change in the blood pressure *this is the stimulus* which stimulate **2** kind of receptors :

1. Carotid artery


(these two areas are sensitive to any change in pressure)


2. Aortic artery

* Any stimulus → receptor → sensation → center (Medullary cardiovascular)
* Medulla (area in the hind brain): responsible of regulating the pressure in the CNS.

CO (F) : Cardiac output | P : Pressure | R : Resistance | HR : Heart rate | SV : Stroke volume | r : Radius of blood vessels .

- كان معكم زملائكم : Rand Bumadian , Reef ALQaissi , Laith Najada & Monther Qatawneh : حان معكم زملائكم # لجنة التبييض