

hypo tonic : less solute , more solvent (water) **hyper tonic** : more solute , less solvent (water)

* I<u>n osmosis</u> t**he granules** don't diffuse through the semipermeable membrane ,but the **solvent** does .

* osmotic pressure :- It's the pressure needed to stop osmosis , also depends on number of molecule rather than the size

* osmosis take place through passing lipid bilayers and protein channel (aqua porins).

2)filtration (bulk flow):- the diffusion of fluid through a membrane that is caused by difference in hydrostatic pressure .

EXAMPLE:

1. The hydrostatic pressure at on artery is higher than the hydrostatic pressure at a vien so that leads to the diffusion of some fluid at the capillary systemic ends forming the interstitial fluid .

**edema is caused due to excessive filtration

<mark>3)solvent drag</mark>

* the diffusion of solute fallowing of it's solvent through the membrane (solvent drags solute after it)

EX:

Kidney is made of collection of nephrones that contain the glumerulus which is a cluster of capillaries around the end of kidney tubules.

*When the blood goes through glomerulus a glomerular filtrate is made by filtration process. * filtrate contains usefull materials so it must be reabsorbed.

* when we reabsorb water it will drag urea with it so it will be reabsorbed too.

1. Na*-k pump (kind of integral protein)

- it pump 3 Na* outside cell and 2 k* inside the cell by **ATP pase** activity which does conformational change to the shape of the pump allowing it to function <u>.</u>

```
عملية إدخال 2k وإخراج 3ca يؤثر على شحنة الخلية( charge of th cell) لذلك سميت هذه
(active transport)
K* should be inside cells because if the level of (K*) in blood increase that will alter the <u>cells</u>
<u>electricity</u> like in the heart cell <u>arrythmia</u> which may cause death
<u>causes</u>
Na* accumulation in cell may cause cell rapture so it must go outside cell
```

<mark>2. calcium pumps</mark>

* calcium in cytoplasm should be stored in **endoplasmic reticulum** to not move freely

* 2 pumps are present :

-in the cell membrane : pumps **Ca*2** to outside cell

-in mitochondria : pumps Ca*2 to inside of mitochondria

<mark>3. H* pump</mark>

H* PUMP pumps H* out side the cell against – electrochemical gradient

EX:

mainly found in **stomach cell** : to make **HCL renal tubules** (pumps **H*** from cell to tubular lumen)

SECONDARY ACTIVE TRANSPORT :

The carrier doesn't have **ATP pase activity** and it transports the substance against it's electrochemical gradient .

EXPLANATION :- the **Na*-K*** ((pump which an example of primary active transport)) pumps **Na*** outside the cell ...Na ions goes to type of port which transports **2** substance either at the same direction (**symport**) or at the opposite direction (**antiport**)

* Now the Na* ions bind at a receptor (symport or antiport) and another substance bind at another receptors at the same port either outside the cell like **Na*** ions or inside the cell ((**opposite to the Na* ions**)).

* Now the **Na*** ions gets transport passive ((with it's electro – chemical gradient)) and other substance ((which may go inside the cell like in the symport or it may go outside with the anti port)) will be transported against it's electro – chemical gradient activity ...and that is why we consider this process a secondary active transport .

* **symport (co – transport)** in which **2** substances are transported in the same direction .

EXAMPLEFrom note.

***antiports (counter transport)** in which **2** substances are transported at opposite directions. *it's **(S)** SHAPE PORT EXAMPLEfrom note.

> نسأل المولى التوفيق لنا ولكم جميعا . كان معكم زملائكم: **يوسف حاتم الطراونة ,صلاح سائد .** أحمد المعايطة , فراس أحمد , رقية محمد