التاريخ : 2-2019-3-2

بسم الله الرحمن الرحيم

المحاضرة: INTRODUCTION 4

تبييض فسيولوجي

The topic of this lecture :

- 1. An overview on the previous lectures .
- 2. To complete talking about active transport .

- 1. **Phagocytosis** (cell eating) : the process by which large {macro} particles are transported inside the cell without (ECF).
- 2. **Pinocytosis** (cell drinking) : macro particles are transported into the cell containing (ECF).

Mechanism of pinocytosis : (FROM HAND OUT !!!)

1. Attachment of the substance to a specific receptor on the cell membrane. The receptors are concentrated in small pits called coated pits .

2. The entire pit invaginates inwards by action of contractile elements.

3. The borders of the invaginated pit close over the attached

substance with some ECF and form a vesicle (pinocytic vesicle).

4. The vesicle separate from the cell membrane and pass to the cytoplasm .

Phagocytosis : \rightarrow (eating) \rightarrow foreign bodies .

It happens in specfic cell :

- White blood cells : (1.microphages , 2.macrophage.) .
- tissue macrophage .

NOTE !!!

-About **WBC**:

* Let's suppose that the bacteria is a foreign body \rightarrow WBC have **receptors** that receive any foreign body \rightarrow **invagination** \rightarrow lysosomes are gonna be activated (**H2O2** produced , **proteoletic enzyme** too) \rightarrow they both will kill the foreign body and destroy it's membrane .

* if there was an injury in any part of the human body , the immune system will go through a fight against the microbes and the bacteria to defend the body , in some causes WBS's die through that "fight" which will result in (puss cells) .

Last tybe of AVTIVE TRANSPORT :

EXOCYTOSIS (Cell excretion) : macro molecules & large particles are transported outside the cell

Example of exocytosis :

Nucleus (it has DNA) \rightarrow it produces RNA \rightarrow converted to sequence of amino acid \rightarrow move to golgi apparatus \rightarrow gets out in the form of vesicle \rightarrow gets through cell membrane .

*Measurement of body water \rightarrow we want to use substances that have this direction .

Intravascular \rightarrow diffusion inter stetial \rightarrow cell membrane \rightarrow get out of them

Such as : 1.antipyrine , 2.deutrium oxide .

 $Volume of \ compatiment = \frac{amount \ of \ substance \ injected}{concentration \ of \ the \ substance \ in \ blasma \ *}$

*Why in plasma ? – because it has spread equally between the cells.

*How about if we want to measure ECF ONLY ?

- We use a substance that has this direction .

 $\mathsf{Plasma} \to \mathsf{ISF} \to \mathsf{do} \ \mathsf{NOT} \ \mathsf{penetrate} \ \mathsf{cell} \ \mathsf{membrane}$

(عشان تضل برا ونطلع الـ ECF)

Such as : inulin .

*How to measure intravascular fluid ?

Let's first review the components of blood \rightarrow plasma + celss

Plasma components \rightarrow

- 1. 90% water .
- 2. 7% protein (plasma protein can't penetrate capillary wall , remains in the intravascular domain .
- 3. The rest is some other material .

* so if we want to measure intravascular fluid we should use a substance like the plasma protein (e.g. **radio active albumin**).

```
ICF = TBW - ECF
ISF = ECF - Plasma
```

*Why is it important to study all the previous calculations ?

 because , sometimes disturbance happen in water content among compartments.

* **OSOMOSIS FRAGILTY** : the ability of a cell to breakdown when its put in different solution .

- Iso-osmotic \rightarrow nothing happens to the cell .

- **hypo-osmotic** \rightarrow the cell rupture and explodes .

- hyper-osmotic \rightarrow the cell shrinks .

NOTE : Increase in the size of ISF will cause edema .

((ICF : intracellular fluid $\ TBW$: total body water $\ ISF$: intestinal fluid $\ ECF$: extracellular fluid))

* How water is filtered ? and how ISF&IVF are made ?

- starting mechanism it has 4 laws :

1) capillary hydrostatic pressure : the pressure caused by the blood that affects the capillary wall .

(the higher it is , the higher filtration)

2) tissue hydrostatic pressure : pressure placed upon the capillary and caused by the surrounding tissue .

ملاحظة : 1&2 عكس بعض ..!!

*let's go back o plasma proteins a little bit , plasma proteins such as : albumin , attack (Na) ions which is also know as (donann effect) , their pressure in the plasma will "**absorb**" water which will work **against** filtration . Known as :

3) capillary osmotic(oncotic) pressure (capillary OP) .

4) tissue osmotic pressure : tissue proteins.

- Capillary hydrostatic pressure (+) \rightarrow with filtration .

-tissue hydrostatic pressure (-) \rightarrow apposite filtration .

-capillary OP (-) .

-tissue OP (+).

** Reflection co-efficient : it's the number between (0-1) . (اعلامة للتمييز !!)

* if the r.c.o for molecule =1 \rightarrow **can't** cross semi-permeable membrane \rightarrow the molecule sucks water towards it .

Like : albumin.

*if the r.c.o for molecule =0.1 (close to zero) \rightarrow gonna cross

semi- permeable membrane .

Like : uria .

إعداد : سلاف معايطة , خالد المجالي , منذر قطاونة .